Generations

My scientific lineage

A biochemist traces his academic genealogy
F. Peter Guengerich
By F. Peter Guengerich
September 01, 2015

When considering scientific influences, one can talk about genealogies of background or of training. None of my own relatives were scientists, so my science lineage is composed primarily of who trained who in my academic history. In recent years, the creation of academic family trees, which trace the influence of an academic’s mentors and degrees granted at institutions, has grown in popularity. They are more common in chemistry than biochemistry, but I was curious about my own and consulted some electronic search tools (see box) that helped me put a tree together fairly easily (Fig. 1). It extends back 200 years and crosses continents.

The tree begins with my two outstanding mentors for my graduate and postdoctoral training, Harry “The Chief” Broquist and Minor J. “Jud” Coon. Beyond them, it branches back through a few American schools (mainly Illinois, Wisconsin and Yale) and then crosses the Atlantic Ocean to Germany and Sweden. My research gleaned interesting details about these individuals and showed me that some individuals — and institutions — can have remarkable influences in the lives of many people in this world of science.

First, let me consider the Ph.D. thesis side, beginning with Broquist, who contributed research in the areas of folic acid, lysine, carnitine and alkaloid biosynthesis. He was a Wisconsin graduate and my mentor first as an undergraduate at the University of Illinois and then in graduate school at Vanderbilt University. Broquist was a graduate student of Esmond Snell, the pre-eminent researcher in pyridoxal chemistry at the University of Wisconsin. Snell had received his Ph.D. at Wisconsin with William H. Peterson, who in turn received his Ph.D. at Wisconsin with Edwin B. Hart. Hart spent some time training in Germany in the 1890s in several labs, particularly with Nobelist L. K. M. H. Albrecht Kossel in Marburg and Heidelberg.

Hart, it seems, never received a doctoral degree, because Kossel moved from one institution to another. Nevertheless, he became a professor at Wisconsin, trained 46 Ph.D. students, and was a member of the National Academy of Sciences — achievements I do not think would all be possible today without a doctorate. Working with his student Harry Steenbock at Wisconsin, Hart determined that iodine deficiency was the cause of goiter.

Researching Kossel meant discovering links to Europe. An M.D. from Strausburg, Austria, Kossel received the Nobel Prize in physiology or medicine for his discovery of the nucleic acid bases. This is of note in light of my own interest in this area, i. e. DNA polymerases and DNA adducts.

Scientific family tree of the author traced by doctoral degrees awarded. Postdoctoral links are indicated with broken lines.

Kossel was a student of Ernst F. Hoppe-Seyler (Leipzig), who may be considered one of the fathers of German biochemistry. He published extensively on hemoglobin and founded what was then the leading German biochemical journal, Hoppe–Seyler’s Zeitschrift für Physiologische Chemie, which is today published as Biological Chemistry. Hoppe–Seyler, an M.D., had trained with Lehmann in Leipzig and also later with Rudolf L. C. Virchow. Virchow, widely acclaimed as the father of modern pathology, wrote more than 2,000 papers; founded several journals; wrote textbooks; and first described the diseases leukemia, chordoma, ochronosis, embolism and thrombosis. His colleagues in Berlin referred to him as the “pope of medicine.” Virchow, in turn, trained with Johann Schölein (Berlin). Schölein was physician to Frederick William IV, discovered the cause of ringworm and named tuberculosis. He trained in Würzburg with Ignaz Döllinger, who obtained an M.D. (Würzburg) in 1794 and made early contributions to comparative anatomy.

The other side of my scientific lineage is traced through my postdoctoral adviser, Jud Coon. Coon is best known for his pioneering research in amino acid metabolism and cytochrome P450 enzymology. He received his Ph.D. from Illinois with William Rose, who discovered threonine and elucidated the requirements for amino acids in rats and humans. The American Society for Biochemistry and Molecular Biology's Rose Award is named for him. I was fortunate to receive this award in 2005, as did Coon and Snell before me.

This branch of my lineage then goes through Yale University for several generations. Rose received his Ph.D. with Lafayette Mendel, a prominent biochemical nutritionist (the American Institute of Nutrition awards the Osborne–Mendel Award each year). Mendel received his Ph.D. (Yale) with Russell Chittenden, sometimes referred to as the father of American biochemistry. Chittenden received his Ph.D. (Yale) with Samuel Johnson, a pioneering agricultural scientist, who received his Ph.D. at Yale with John Norton. Norton, also an agricultural science pioneer with a Ph.D. from Yale, trained with James Johnston.

Crossing the Atlantic on this side, now to Sweden, Johnston received a Ph.D. from Uppsala working with Jöns Jakob Berzelius, who is generally considered a father of modern chemistry, along with Robert Doyle, John Dalton and Antoine Lavoisier. He discovered the elements cerium and thorium and also developed the table of atomic weights. Another of Berzelius’s students was Friedrich Wöhler, who first synthesized urea in 1828. Thus, one can see that our biochemical ancestors were trained in medicine and chemistry; they more or less invented biochemistry.

Berzelius received his degree with Johann Afzelius (Uppsala), who had trained with Torbern Bergman, considered the first analytical chemist in Sweden.

Bergman received his Ph. D. (Uppsala) working with Bengt Ferrner, an astronomer. I was able to trace his lineage back for at least five more generations (not shown) to learned men mostly in the areas of mathematics and physics from all over Europe, including Basel, Switzerland, Leiden, the Netherlands, Jena, Germany, and Paris, France. At this time, our own field was little advanced beyond alchemy — or perhaps we should call it “albiochemy.”

A few universities dominate in my tree — Vanderbilt, Illinois, Wisconsin, Yale, Uppsala and Würzburg — and my lineage underlines the European roots of the sciences in the United States.

If one considers more details of the 20 individuals on this list (Fig. 1, not including Ferrner or me), it is really remarkable how much they contributed to science in terms of advancing the field we now call biochemistry. Chittenden was one of the founders of the ASBMB (then the American Society of Biological Chemists, or ASBC, which is what it still was when I became a member in 1978) and our first president. Mendel, Rose, Snell and Coon were also presidents of the society. Kossel was a Nobel laureate (1910). Snell, Hart, Coon, Rose, Mendel, Chittenden and Johnson were (are) members of the U.S. National Academy of Sciences.

Important applications in fields including agriculture, nutrition and drug metabolism are part of my lineage. Isaac Newton said, “If I have seen a little further, it is by standing on the shoulders of giants.” This applies here and probably to the family trees many of you will find if you ever do this. Another important point to make is that these people were undoubtedly good mentors, or this lineage would not exist. I know from firsthand experience that Broquist and Coon certainly were, and I have tried to emulate them.

This is not just boring history about some old guys. It is evidence that we should all make the most out of our opportunities in science. What we do is important in the scheme of things. Twenty people created a heritage that will last for centuries in terms of the influence they had in science and in training others to do science — science that truly matters in the lives of everyday individuals. We are not just treading water until we can collect our pensions. Individuals and institutions can make a difference in the lives of others. We can be part of a legacy that changes the world.

 
F. Peter Guengerich
F. Peter Guengerich

F. Peter Guengerich received a Ph.D. at Vanderbilt University and is the Tadashi Inagami professor of biochemistry there. He is the interim editor-in-chief for the Journal of Biological Chemistry and frequent contributor. In 2005, he received the American Society for Biochemistry and Molecular Biology’s William Rose Award.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Opinions

Opinions highlights or most popular articles

The national certification exam as a faculty development experience
Education

The national certification exam as a faculty development experience

September 16, 2020

As a volunteer helping with the ASBMB certification exam, Brian Chiswell has learned valuable lessons he can put to work in his own classroom.

This week's staff picks
Stroopwafels

This week's staff picks

September 12, 2020

As the summer slips away and we continue our strange pandemic existence, we continue to seek escape — by watching and listening to captivating stories, by getting outside, and even by fretting over houseplants.

A time for reimagining
Editor's Note

A time for reimagining

September 10, 2020

The world will be a different place next spring — a year after COVID-19 began to shutter much of the planet. Why not make this a time for rethinking structures in ways that are more sensible and just?  We want your ideas for how to do that. 

Virtual volunteering in the land of lakes and volcanoes
Outreach

Virtual volunteering in the land of lakes and volcanoes

September 09, 2020

Brandon Roy encourages other scientists to teach students in Nicaragua through the Outreach 360 program

A gap year or a few
Essay

A gap year or a few

September 05, 2020

Marya Sabir writes about the value of postbaccalaureate programs for students who don’t feel ready for graduate school.

The time for change is now
Essay

The time for change is now

September 03, 2020

After a a discussion series on systemic issues in biomedical research and how those issues were amplified by the pandemic, Chris Pickett came up with 17 recommendations for universities and departments to enact long-term change.