Feature

Spatial transcriptomics sharpens distinctions between brains

Laurel Oldach
Dec. 15, 2022

Single-cell RNA sequencing is becoming a workhorse of transcriptomics, giving researchers details on transcription in individual cells and a sense of both tissue-level heterogeneity and how many cell types are present. As powerful as single-cell techniques are, they pose a challenge in that tissues must be dissociated to be analyzed. This can cost contextual information in tissues where a cell’s position is important.

In the brain, for example, many functions depend on interactions between adjacent cells. Based on single-cell sequencing, researchers have identified multiple types of both inhibitory and excitatory neurons in the brain and dozens of subtypes of glia, or nonneuronal cells. But to learn more about how position affects function and how this diversity of cell types arises, researchers need more information about which cells are where — a question for spatial transcriptomics.

There are several ways to assay the transcriptome without losing spatial information. Researchers can microdissect tiny, defined portions of tissues for RNA sequencing assays; they can capture nucleic acids in a known, spatially defined pattern before single-cell sequencing; or they can hybridize fluorescent probes to RNA and image it in thin tissue sections, sometimes after expanding the tissue. Scientists have struggled to strike a balance between spatial resolution and the number of transcripts they can assay at once.

In contrast to in situ hybridization experiments like this one, which shows where in the mouse brain a single transcript is located, spatial transcriptomics experiments can give researchers information about the whereabouts of many transcripts at once.
In contrast to in situ hybridization experiments like this one, which shows where in the mouse brain a single transcript is located, spatial transcriptomics experiments can give researchers information about the whereabouts of many transcripts at once.

In the journal Science, a Harvard team used a multiplexed in situ hybridization technique called MERFISH, which assays tissue slices for a selection of thousands of genes, to identify dozens of cell types in multiple regions of the mouse and human cortexes. The researchers spotted numerous interesting distinctions between the two species; for example, the human cortex is composed of a higher proportion of glia and inhibitory neurons than the mouse cortex. Human brains were also much more apt to show soma, or cell body, interactions between distinct cell types, particularly neurons and glial cells, suggesting more complex contact-mediated relationships between these cells.

In another paper in Science, researchers based at Yale and the University of Wisconsin–Madison, compared human, macaque, chimpanzee and marmoset brain regions responsible for cognition, identifying subtle differences in important genes, such as a dopamine-producing enzyme, in certain cell types by region.

These techniques have yet to capture single cells in space. However, researchers are developing ways to get closer. A method published in the journal Nature Biotechnology this year by a research team from across Europe merges expression signatures from single-cell RNA sequencing experiments with spatial transcriptomic location from a sparse subset of these transcripts. By combining the data, the method can determine which classes of cells exist in each location and which type most likely occupies a given location. Other scientists at Harvard are working on ways to determine likely boundaries between cells based on their transcriptomes.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Opinions

Opinions highlights or most popular articles

Talking about maximizing access
President's Message

Talking about maximizing access

Feb. 1, 2023

Ann Stock, president of the ASBMB, talks to Sonia Flores about the society’s Maximizing Access Committee, better known as the MAC.

What to read and watch during Black History Month
Observance

What to read and watch during Black History Month

Feb. 1, 2023

The ASBMB Maximizing Access Committee shares its picks.

Common psychotropic meds disrupt cholesterol synthesis in brain
Journal News

Common psychotropic meds disrupt cholesterol synthesis in brain

Jan. 31, 2023

Mouse study explains why adults sometimes get misdiagnosed with rare syndrome that affects babies.

Science meets soccer: It’s all about passion
Essay

Science meets soccer: It’s all about passion

Jan. 23, 2023

"As in sports, success in science is not only about intrinsic talent or natural abilities. It requires genuine commitment, eagerness to learn, discipline, teamwork — and truthfully, sometimes a bit of luck."

Equal benefits for postdocs
Jobs

Equal benefits for postdocs

Jan. 17, 2023

Postdocs on federal fellowships should receive equal benefits as peers, write Mallory R. Smith and Thomas P. Kimbis.

China now publishes more high-quality science than any other nation
Essay

China now publishes more high-quality science than any other nation

Jan. 15, 2023

Thanks to investment and a growing, capable workforce, the country’s scientific output has increased steadily and become more novel and creative.