Feature

Spatial transcriptomics sharpens distinctions between brains

Laurel Oldach
Dec. 15, 2022

Single-cell RNA sequencing is becoming a workhorse of transcriptomics, giving researchers details on transcription in individual cells and a sense of both tissue-level heterogeneity and how many cell types are present. As powerful as single-cell techniques are, they pose a challenge in that tissues must be dissociated to be analyzed. This can cost contextual information in tissues where a cell’s position is important.

In the brain, for example, many functions depend on interactions between adjacent cells. Based on single-cell sequencing, researchers have identified multiple types of both inhibitory and excitatory neurons in the brain and dozens of subtypes of glia, or nonneuronal cells. But to learn more about how position affects function and how this diversity of cell types arises, researchers need more information about which cells are where — a question for spatial transcriptomics.

There are several ways to assay the transcriptome without losing spatial information. Researchers can microdissect tiny, defined portions of tissues for RNA sequencing assays; they can capture nucleic acids in a known, spatially defined pattern before single-cell sequencing; or they can hybridize fluorescent probes to RNA and image it in thin tissue sections, sometimes after expanding the tissue. Scientists have struggled to strike a balance between spatial resolution and the number of transcripts they can assay at once.

In contrast to in situ hybridization experiments like this one, which shows where in the mouse brain a single transcript is located, spatial transcriptomics experiments can give researchers information about the whereabouts of many transcripts at once.
In contrast to in situ hybridization experiments like this one, which shows where in the mouse brain a single transcript is located, spatial transcriptomics experiments can give researchers information about the whereabouts of many transcripts at once.

In the journal Science, a Harvard team used a multiplexed in situ hybridization technique called MERFISH, which assays tissue slices for a selection of thousands of genes, to identify dozens of cell types in multiple regions of the mouse and human cortexes. The researchers spotted numerous interesting distinctions between the two species; for example, the human cortex is composed of a higher proportion of glia and inhibitory neurons than the mouse cortex. Human brains were also much more apt to show soma, or cell body, interactions between distinct cell types, particularly neurons and glial cells, suggesting more complex contact-mediated relationships between these cells.

In another paper in Science, researchers based at Yale and the University of Wisconsin–Madison, compared human, macaque, chimpanzee and marmoset brain regions responsible for cognition, identifying subtle differences in important genes, such as a dopamine-producing enzyme, in certain cell types by region.

These techniques have yet to capture single cells in space. However, researchers are developing ways to get closer. A method published in the journal Nature Biotechnology this year by a research team from across Europe merges expression signatures from single-cell RNA sequencing experiments with spatial transcriptomic location from a sparse subset of these transcripts. By combining the data, the method can determine which classes of cells exist in each location and which type most likely occupies a given location. Other scientists at Harvard are working on ways to determine likely boundaries between cells based on their transcriptomes.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Related articles

Nobel honors discovery of microRNAs
Marissa Locke Rottinghaus
From the Journals: JBC
Ken Farabaugh
Cities under the sea
Marissa Locke Rottinghaus
The perfect storm
Marissa Locke Rottinghaus
Best of BMB 2022
Laurel Oldach

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Opinions

Opinions highlights or most popular articles

Can we make grad school more welcoming for all?
Essay

Can we make grad school more welcoming for all?

Dec. 11, 2024

The students and faculty at most of the institutions training the next generation of STEM professionals do not reflect the country’s diversifying demographics, leaving a gap in experience and cultural understanding.

I am not a fake. I am authentically me
Essay

I am not a fake. I am authentically me

Dec. 5, 2024

Camellia Moses Okpodu explains why she believes the term “imposter syndrome” is inaccurate and should be replaced.

Where do we search for the fundamental stuff of life?
Essay

Where do we search for the fundamental stuff of life?

Dec. 1, 2024

Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.

Scientists around the world report millions of new discoveries every year
Essay

Scientists around the world report millions of new discoveries every year

Nov. 24, 2024

Science is a collaborative endeavor, and international teams have contributed to a huge rise in scientific output.

Who decides when a grad student graduates?
Training

Who decides when a grad student graduates?

Nov. 15, 2024

Ph.D. programs often don’t have a set timeline. Students continue with their research until their thesis is done, which is where variability comes into play.

Redefining ‘what’s possible’ at the annual meeting
President's Message

Redefining ‘what’s possible’ at the annual meeting

Nov. 1, 2024

The ASBMB Annual Meeting is “a high-impact event — a worthwhile investment for all who are dedicated to advancing the field of biochemistry and molecular biology and their careers.”