December 2011

Synthetic biology: edging toward the clinic

Researchers are carefully moving forward in creating engineered biological systems for applications such as drug production and cell-based therapies.


Slowly, slowly, synthetic biology has been inching toward clinical applications. Those closest to this decade-old field say the time has come to test it against some of the most pressing global clinical challenges.

The goal of synthetic biology is the manipulation of biological cells in a predictable and rational fashion at the molecular level to carry out a given task efficiently and reliably at a cost of mere pennies. James J. Collins, a Howard Hughes Medical Institute investigator at Boston University, explains that over time, the community has become more efficient and savvy in manipulating biomolecules “to reprogram organisms and endow them with novel functions.” While some researchers are focusing on environmental, energy, and commodity chemical production issues, others are tackling longstanding biomedical problems (1, 2).

Some significant steps have been taken recently on the clinical front: Specially designed microorganisms can synthesize critical drugs, and a device has been created to track ovulation in cows for the dairy and livestock industry. Academic research laboratories are pushing for human therapies, such as re-engineering probiotic bacteria to tackle cholera. The brass ring in the field is to re-engineer cells taken from patients and put them back in to cure complex diseases.


'What’s in a name?'
But in discussing synthetic biology, a schism appears. A PubMed search for “synthetic biology” in journal article titles pulls up 310 articles since 2003. Obviously, there are researchers who believe that synthetic biology is a bona fide field. But some researchers, like John C. March of Cornell University and Andrew D. Ellington at the University of Texas at Austin, assert that “synthetic biology” is just a buzz phrase.

“What does synthetic biology have to offer? Perhaps it is a new way to look at things, but really many of the same thrusts have been proceeding under the rubric of biotechnology, molecular biology and bioengineering,” says Ellington. “This cobbled-together field adopted a name, but that doesn’t mean it has any sort of intellectual center or gravitas.”

March says he hasn’t seen anything in the literature that suggests synthetic biology “is a new science.” He sees it largely as sophisticated genetic engineering. Journal articles about synthetic biology don’t describe anything more than “taking genes out of one organism and putting them in another and looking more at the transcriptional control of gene expression,” which has been done for over 30 years, says March.

Collins says he understands the criticism. Synthetic biology is closely related to genetic engineering and “utilizes the tools and methods that were developed as part of genetic engineering,” says Collins. “It’s genetic engineering on technological steroids.” He and other self-described synthetic biologists say genetic engineering tends to focus on individual genes, while synthetic biology strings together a series of molecular components, such as DNA, RNA, proteins and cells, into circuits and networks.

NEXT PAGE 1 | 2 | 3 | 4

First Name:
Last Name:

Comment on this item:
Our comments are moderated. Maximum 1000 characters. We would appreciate it if you signed your name to your comment.


There aren't any comments on this item yet. Tell us what you think!


Page 1 of 1

found= true1587