Just drops of viper venom
pack a deadly punch

Published August 01 2018

Researchers studying venom from Bothrops jararaca (pictured) and related vipers have done a structural analysis of glycoproteins in the venom that may give insight into toxic proteins’ solubility and stability.Courtesy of Wikimedia user Leandro Avelar A bite from a lancehead viper can be fatal. Species in the family, among the most dangerous snakes in Central and South America, have venom that can disrupt blood clotting and cause hemorrhage, strokes and kidney failure.

Researchers at Brazil’s largest producer of anti-venoms have done a structural analysis of glycans modifying venom proteins in several species of lancehead. The report offers insight into the solubility and stability of toxic proteins from venom and into how venoms from different species vary. Scientists are working to map glycan structures back onto the proteins they modify.

Solange Serrano, a researcher at the Laboratory of Applied Toxicology at the Instituto Butantan in Sao Paulo, studies the protein toxins in lancehead venom. In a recent article in Molecular & Cellular Proteomics, scientists from Serrano’s laboratory, in collaboration with researchers at the University of New Hampshire, report on the sweet side of snake venom toxins.

The researchers looked at glycans, a group of sugar molecules attached in a complex chain, often with many branches, that can be attached to proteins. According to Serrano, most proteins in lancehead venom are modified with glycans, which can affect the proteins’ folding, stability and binding. But little is known about glycan structure in the venom.

Related articles

Masters of physiology
Christie Wilcox, who wrote a book on venom, describes how the science of venom analysis has changed over time.

Venom-based therapies: healing in the midst of pain
Pumtiwitt McCarthy of Morgan State University surveys the various therapies that have been derived from venoms.

Spotlight on glycoscience
Why is glycoproteomics more difficult than analysis of template-driven macromolecules such as DNA and proteins? Find out in this explainer by Raj Mukhopadhyay.

Also by this author

Puzzling out Parkinson’s disease: The gut-brain connection

Gene therapy shows promise for deadly childhood disorder

Journal names winner of 2018 Tabor awards

Serrano’s graduate student Debora Andrade-Silva visited the laboratory of glycomics expert Vernon Reinhold in New Hampshire to learn techniques for structural characterization of glycans. While there, Andrade-Silva and colleagues characterized the structure of 60 glycan chains in eight lancehead, or Bothrops, species’ venoms. The researchers isolated the glycans and analyzed them by mass spectrometry, breaking down each complex molecule into smaller, simpler ions. By piecing together the spectra of many such ions, they could tell which sugars were present and how they were linked into treelike glycan structures.

Lancehead venom contains nearly 100 milligrams of protein per milliliter of liquid. At this concentration, protein solutions tend to become viscous or form gels. Analyzing the structures of glycans attached to the proteins, the researchers found that a disproportionate number were tipped with sialic acid, a sugar with a negative charge.

“Glycans containing sialic acid may help in venom solubility and increase toxin half-life,” Serrano said.

Sialic acid on a toxic enzyme may also bind to host proteins called siglecs, pulling the enzyme closer to target cells for greater effect; this has been observed in other types of venom.

While Serrano’s group researches venom composition, the applications are close to home. Another department of the Instituto Butantan produces most of the anti-venom available in Brazil. Serrano said she hopes that basic research into venom toxins will help researchers develop improved treatments for envenomation.

“The antivenoms do a reasonable job, but they are not so good at neutralizing the local effects of snakebite,” Serrano said.

These effects, including swelling, hemorrhage and necrosis, can be so severe that doctors must sometimes amputate bitten limbs. Better understanding of how venom differs between snake species could improve the efficacy of anti-venom treatment.

Andrade-Silva and Serrano are working to map the structures from the glycan inventory back onto the proteins they modify. Because some venom proteins have been repurposed as medicines, knowing more about how glycosylation helps each protein fold, hold its shape and attach to binding partners may have applications in biotechnology.

Laurel Oldach Laurel Oldach is a science communicator for the Journal of Lipid Research and Molecular & Cellular Proteomics and a staff writer for ASBMB Today. Follow her on Twitter.