Journal News

MCP: Worms, too, slow down
in old age

John Arnst
Sept. 1, 2017

In efforts to stave off death, unicellular and multicellular organisms constantly are recycling proteins, breaking down those that are damaged to provide building blocks for fresh copies that can carry out cellular functions. The process is an uphill battle with an inevitable end: The recycling and refreshing slow down, causing cellular damage to continue accruing until the organism dies and ultimately is broken into biochemical materials for other life. This progression, known as senescence, occurs in nearly every organism on Earth and has been studied extensively in the model organism Caenorhabditis elegans.

MCP-worms,-too,-slow-down-in-old-age-load.jpg

The roundworms’ decrease in protein turnover doesn’t occur evenly, however. Researchers at Ghent University in Belgium recently determined that two families of proteins involved in intracellular movement and reproduction are especially hard-hit in the worms.

“It’s not a uniform slowdown of the whole set of proteins,” said Ineke Dhondt, a postdoctoral researcher in the university’s Laboratory for Aging Physiology and Molecular Evolution. Dhondt and colleagues at the Pacific Northwestern National Laboratory in Washington recently described their findings in the journal Molecular & Cellular Proteomics. Previous papers in the field had determined that protein turnover in C. elegans decreases with age but hadn’t examined how significantly the effects varied between different families of proteins. “There are proteins that keep or retain their turnover,” Dhondt said. “That might be quite a different insight from other studies that only focus on the bulk protein turnover.”

C. elegans are widely used to study aging due to their short lifespan and well-characterized genomes. To examine which proteins were being turned over, the researchers fed subpopulations of the worms alternating samples of the bacteria Escherichia coli grown with either heavy or light nitrogen isotopes, characterizing the worms’ protein production with mass spectrometry before and after each meal over several days. The difference in isotope weights causes a slight weight difference in proteins that are subsequently synthesized, which can yield information about changes in protein production when compared with the previous spectrometer readings.

Dhondt and her colleagues found that the worms were decreasing their turnover of proteins in the tubulin and vitellogenin families, which are involved in cytoskeletal movement and production of eggs, respectively. They also found that ribosomal proteins, which are responsible for protein synthesis and all generally have a similar half-life, ended up varying widely in their turnover rates.

“We saw that these protein-turnover values really fan out over time,” Dhondt said. “That was an indication that this group might be important to dysregulation of the protein synthesis phenomenon, and that actually can be a key component to underlie aging.”

They also found that proteins responsible for protein degradation, such as the ubiquitin system, tended to continue their turnover throughout aging. “It’s like (the worms) want to keep up their function, so by refreshing these proteins, they want to make sure that these proteins keep functioning,” Dhondt said. “But in the end they’re fighting a battle that they can’t win, because the whole proteome will ultimately collapse.”

Dhondt and colleagues plan to continue studying aging in roundworms, with a new focus on the quality of health the worms exhibit into old age. “An important parameter for us is to look at the ability of the worms to move,” she said. “We are checking not only if the worms are living longer from a certain treatment but whether they are also exhibiting better health.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
John Arnst

John Arnst was a science writer for ASBMB Today.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Immune cells can adapt to invading pathogens
News

Immune cells can adapt to invading pathogens

April 20, 2024

A team of bioengineers studies how T cells decide whether to fight now or prepare for the next battle.

Hinton lab maps structure of mitochondria at different life stages
Member News

Hinton lab maps structure of mitochondria at different life stages

April 20, 2024

An international team determines the differences in the 3D morphology of mitochondria and cristae, their inner membrane folds, in brown adipose tissue.

National Academies propose initiative to sequence all RNA molecules
News

National Academies propose initiative to sequence all RNA molecules

April 19, 2024

Unlocking the epitranscriptome could transform health, medicine, agriculture, energy and national security.

From the journals: JLR
Journal News

From the journals: JLR

April 19, 2024

What can you do with artificial lipoproteins? A new key to angiogenesis. Flavonoids counteract oxidative stress. Read about recent papers on these topics.

Iron could be key to treating a global parasitic disease
Journal News

Iron could be key to treating a global parasitic disease

April 16, 2024

A study has found that leishmaniasis causes body-wide changes in iron balance, leading to red blood cell damage.

Environmental DNA is everywhere
News

Environmental DNA is everywhere

April 14, 2024

The ability to extract trace bits of DNA from soil, water, and even air is revolutionizing science. Are there pitfalls?