Journal News

MCP: Infant gut microbes’ thirst
for milk glycoproteins

John Arnst
Nov. 1, 2016

Milk is a complicated liquid. Among its ingredients, which include lactose, lipids, free oligosaccharides and proteins, the free oligosaccharides perform the essential prebiotic roles of stimulating the growth of beneficial bacteria and preventing harmful bacteria from binding to epithelial cells in the gut. In a paper recently published in Molecular & Cellular Proteomics, researchers at the University of California, Davis, report that the bacteria in infants’ guts are also capable of digesting glycoproteins.

MCP-breastfeeding-download-but-smaller-(1).jpg

The researchers previously had thought of glycoproteins as a source of carbohydrate-bound amino acids that were only consumed by the infant, “but it turns out that parts of it, particularly the oligosaccharide, may also be feeding the microbiota,” explains Carlito Lebrilla, the paper’s senior author. “It has a dual use here — to give nutrition to the host, but also to enhance the microbiota.”

The new paper is a unification of sorts for the researchers, who have focused on the oligosaccharide components of human milk for a number of years and had an interest in the interactions between the microbiota and oligosaccharides.

While there was a good deal of research involving the milk oligosaccharides, Lebrilla explains, he and his colleagues hadn’t scrutinized what happens after the milk oligosaccharides interact with the microbiota. “This is one of the first times we’ve looked … in deep structural detail at what happens to the actual compounds as they go through” the gut, he says.

To determine the effects of digestion on the oligosaccharide portions of glycoproteins in breast milk, the researchers collected breast milk and stool samples from mother–infant pairs enrolled in the university’s Foods for Health Institute Lactation Study. They then isolated and cultured the dominant bacterial subspecies of Bifidobacteria longum from the stool samples. B. longum, in aggregate, accounts for up to 90 percent of the gut microbiota in milk-fed infants.

The investigators fed the bacteria the milk glycoproteins extracted from the breast milk. After demonstrating that the bacteria were breaking down the glycoproteins, Lebrilla’s group obtained a detailed profile of the oligosaccharides that had been released from the glycoproteins by subjecting the fecal samples to tandem mass spectrometry. The researchers were surprised to find the presence of degraded N-glycans in the fecal samples. N-glycans had been hypothesized as digestive targets because they were present in breast milk, but until now, they had not been observed post-digestion. The finding by Lebrilla and colleagues indicates that the bacterial species act upon the oligosaccharide components of the compound, which suggests the sugar moieties on breast milk glycoproteins can fuel the gut microbiome.

A collaborating group led by David Mills at the university’s Foods for Health Institute then sequenced the bacteria to get a comprehensive look at which enzymes were responsible for breaking down the milk oligosaccharides and when they were expressed, as well as their specificity. They found that one of the subspecies of B. longum contained genes for a glycoprotein-cleaving endoglycosidase. The researchers also noted that an exogalactosidase, BLNG_00015, was present in another dominant B. longum subspecies and capable of degrading glycoproteins with a terminal monosaccharide galactose residue. This, Lebrilla explains, is evidence of the specificity of the microbial enzymes for the glycoproteins.

Future work for Lebrilla and his colleagues will include examining the milk proteins that are being deglycosolated, exploring why certain milk protein concentrations seem to confer greater protection against stunting in infants than others, and investigating how the microbiota change in humans from a milk-oriented micobiota to a plant-based microbiota as we age.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
John Arnst

John Arnst was a science writer for ASBMB Today.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Mining microbes for rare earth solutions
Award

Mining microbes for rare earth solutions

Jan. 14, 2026

Joseph Cotruvo, Jr., will receive the ASBMB Mildred Cohn Young Investigator Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Fueling healthier aging, connecting metabolism stress and time
Feature

Fueling healthier aging, connecting metabolism stress and time

Jan. 8, 2026

Biochemist Melanie McReynolds investigates how metabolism and stress shape the aging process. Her research on NAD+, a molecule central to cellular energy, reveals how maintaining its balance could promote healthier, longer lives.

Mapping proteins, one side chain at a time
Award

Mapping proteins, one side chain at a time

Jan. 7, 2026

Roland Dunbrack Jr. will receive the ASBMB DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Exploring the link between lipids and longevity
Profile

Exploring the link between lipids and longevity

Jan. 2, 2026

Meng Wang will present her work on metabolism and aging at the ASBMB Annual Meeting, March 7-10, just outside of Washington, D.C.

Defining a ‘crucial gatekeeper’ of lipid metabolism
Award

Defining a ‘crucial gatekeeper’ of lipid metabolism

Dec. 31, 2025

George Carman receives the Herbert Tabor Research Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

The science of staying strong
Feature

The science of staying strong

Dec. 26, 2025

Muscles power every movement, but they also tell the story of aging itself. Scientists are uncovering how strength fades, why some species resist it and what lifestyle and molecular clues could help preserve muscle health for life.