
ASBMB-DEUEL CONFERENCE ON LIPIDS

March 6 – 9, 2018 Coronado, Calif.

More than any meeting in the lipid field, the Deuel Conference on Lipids provides a collegial and informal setting for close interactions between scientists from industry and academia.

2018 SPONSORS

CSL Behring Biotherapies for Life[™]

U NOVARTIS

Genentech

REGENERO

science to medicine

NZ

novo nordisk

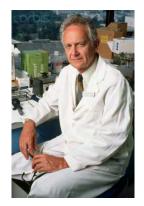
SASBMB

Lilly

Journal of Lipid Research

Table of Contents

The ASBMB-Deuel Conference on Lipids, March 6 – 9, 2018


Hotel del Coronado, San Diego, Calif.

About the Havel Lecture	2
2018 Havel Award Lecturer and Past Awardees	3
Schedule At-a-Glance	4
Meeting Program	5
Poster Presentations	9
Author Index	70
Deuel Board	75
Conference Participants	77

The Deuel Conference on Lipids was organized in 1955 by a small group of eminent West Coast investigators who were interested in lipid metabolism. Their goal was to establish a high-quality conference on lipids within the western part of the country, akin to forums provided by the Gordon Conferences on the east coast. Shortly after the Conference was organized, one of the founders, Dr. Harry Deuel, died—and the conference was named in his memory. The two-and-one-half day conference includes up to five scientific sessions, with an eminent lipid scientist chairing each session. Each session includes three to four original scientific presentations followed by in-depth discussions of the topic.

The relatively small size of the audience, a round-table format, and the absence of videotaping or recording, encourage informality and the free interchange of new hypotheses and scientific data. Lively discussions by conference participants are the highlight of the meeting.

About the Havel Award Lecture

The Havel Lecture was named after Richard J. Havel because he has done more than anyone else to keep the Conference vibrant. For many years, he organized the meeting, and each year he has energized the scientific discussions.

Richard J. Havel is known to many as "Mr. Lipoprotein, USA." Havel has unraveled the complex metabolism of plasma lipoproteins. As a Clinical Associate in the laboratory of Christian Anfinsen at the National Institute of Health (1953-1956) he published a manuscript on the complex metabolism of the plasma lipoproteins beginning with his pioneering work in the Anfinsen lab at the National Heart Institute in Bethesda, Maryland, where he was one of the first Clinical Associates from 1953–1956. This manuscript is one of the most frequently cited papers in the scientific literature, rivaling Lowry's paper on protein measurement.

Richard Havel has published over 300 manuscripts. The quality of his publications is reflected in his election to the National Academy of Sciences in 1983; the Institute of Medicine in 1989; and the American Academy of Arts and Sciences in 1992. He has received many other honors including the Bristol-Myers Squibb Award for Distinguished Achievement in Nutrition Research and the Distinguished Achievement Award from the AHA Council on Arteriosclerosis.

The first Havel Lecture was held on March 6, 2002, at the 2002 Deuel Conference on Lipids in Borrego Springs, California.

2018 Havel Award Lecturer

Michael Czech, **University of Massachusetts** Medical School "Crosstalk between fat metabolism and neuronal signalling"

PAST HAVEL AWARDEES

2008

2007

University of California, Los Angeles *Adventures in lipid metabolism" Helen H. Hobbs. University of Texas Southwestern Medical Center "Going to extremes to identify genetic variations contributing to cardiovascular risk' **Ronald Evans, The Salk** Institute "PPARdelta and the marathon mouse: running around physiology" David Russell, **University of Texas** Southwestern Medical Center

Stephen G. Young,

"The enzymes of cholesterol breakdown"

Johann Deisenhofer, **University of Texas** Southwestern Medical Center, HHMI "Structure of the LDL receptor"

Jeffrey M. Friedman, **Rockefeller University** "Oxysterol regulation of macrophage gene expression"

Bruce Spiegelman, Harvard Medical School "Transcriptional control of energy and glucose metabolism"

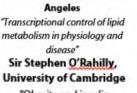
Michael S. Brown and Joseph L. Goldstein, University of Texas Southwestern **Medical Center** "SREBPs: Master regulators of lipid metabolism"

2016

2015

2014

2013


2012

2011

2010

Peter Tontonoz,

University of California, Los

"Obesity and insulin resistance; lessons from human genetics"

Thomas Sudhof, **Stanford University** "Brown & Goldstein-inspired science off field: lipid membrane fusion at the synapse"

Rudolf Zechner, University of Graz "Lipolysis - more than just the breakdown of fat"

Rick Lifton, Yale University "From human genetics to validated therapeutic targets"

Gokhan Hotamisligil, Harvard University "Inflammation, endoplasmic reticulum stress and lipids: emerging networks regulating metabolism" Christopher K. Glass, University of California, San Diego "Oxysterol regulation of macrophage gene expression" David J. Mangelsdorf, **University of Texas** Southwestern Medical Center "Nuclear receptor control of lipid metabolism"

2006

2005

2004

2003

Schedule At-a-Glance

	Tuesday, 3/6	Wednesday, 3/7	Thursday, 3/	8	Friday, 3/9
7AM		Breakfast 7:00-8:15	Breakfast 7:00-8:15	Board Meeting 7:00-8:15	Breakfast 7:00-8:15
8AM		Session 1 8:30-9:55	Session 3 8:30-9:55	7:00-8:15	Session 5 8:30-10:45
9AM					
10AM		Coffee Break 9:55	Coffee Break 9:55		
11AM		Session 1, Cont. 10:30 – 12:05	Session 3, Cor 10:30 – 11:50		Closing 10:45
12PM		Free Time 12:05-4:30	Free Time 11:50-4:30		
1PM					
2PM					
3PM	Registration				
4PM	3:00-5:00	4:30-6:00	4:30-6:00		- Contra - C
5PM	Opening Reception and Dinner 5:00-7:30	Poster Session 1	Poster Session	n 2	
6PM	5:00-7:30	6:00-7:15 Dinner	6:00-7:15 Dinner		
7PM	The Usual Leaders	7:15-9:15 Session 2	7:15-9:45 Session 4		-
8PM	The Havel Lecture 7:40 – 8:30		Session 4		
9PM					
10PM					

The ASBMB-Deuel Conference Program

Program Co-Chairs: Joel Elmquist (UT Southwestern Medical Center) and David Mangelsdorf (UT Southwestern Medical Center)

Tuesday, March 6

3:00 – 5:00	Meeting Registration, Garden Patio
5:00 – 7:30	Opening Reception (Garden Patio) and Dinner (Ballroom, Victorian Building)
7:30 – 7:35	Welcome: Jay Horton, UT Southwestern Medical Center
7:35 – 7:40	The Havel Lecture Introduction David Mangelsdorf, UT Southwestern
7:40 – 8:30	The Havel Lecture " Crosstalk between fat metabolism and neuronal signaling" Michael Czech, University of Massachusetts Medical School

Wednesday, March 7

8:30 am- 12:05 pm

Session 1: Nutrients and complex behaviors, Ballroom, Victorian Building Session Chair: Joel Elmquist, University of Texas Southwestern Medical Center

8:30 – 9:05	"Hypothalamic melanocortin system and metabolism" Tamas Horvath, Yale University
9:05 – 9:40	"FGF21: From Thirsty to Thin" Steven Kliewer, UT Southwestern
9:40 – 10:30	Coffee break
10:30 – 11:05	"PCSK9 as a regulator of the cholesterol homeostasis" Helen Hobbs, UT Southwestern
11:05 – 11:40	"From Receptors to Behavior" Charles Zuker, Columbia University
11:40 – 12:05	"Macrophage-derived neurotrophic factor GDF15 mediates a novel neuro-immune interaction in adipose tissues" Joshua Chang, Genentech Inc

12:05 – 4:30 Free time

- 4:30 6:00 Poster Session 1, Ballroom, Victorian Building
- 6:00 7:15 Dinner, Ballroom, Victorian Building

7:15 – 9:15 pm

Session 2: Neuroendocrine control of metabolism, Ballroom, Victorian Building Session Chair: Cynthia Hong, Pfizer			
7:15 – 7:50	"GLP-1 action in the CNS and the regulation of metabolism " Darleen Sandoval, University of Michigan		
7:50 – 8:25	"Ghrelin and the metabolic responses to exercise training" Jeffrey Zigman, UT Southwestern		
8:25 – 9:00	"Proteostasis, neurons, and metabolism" Andrew Dillin, UC Berkeley		
9:00 – 9:15	"Cellular and Synaptic Reorganization after Exercise Training" Kevin Williams, UT Southwestern Medical Center		

Thursday, March 8

8:30 - 11:50 am

Session 3: Inter-organ communication, Regent, Grande Hall Session Chair: Stephen Young, University of California, Los Angeles

8:30 – 9:05	"The neuropharmacology of FGF1 as an insulin sensitizer"
	Ronald Evans, The Salk Institute

- 9:05 9:40 "CNS regulation of glycemia" Michael Schwartz, University of Washington
- 9:40 9:55 **"A strategy for discovery of endocrine interactions with application to whole-body** metabolism" Manua Salalia, University of California, Lee Annales

Marcus Seldin, University of California, Los Angeles

- 9:55 10:30 Coffee break
- 10:30 11:05 **"Leptin, glucocorticoids, and metabolic flux**" Gerald Shulman, Yale University
- 11:05 10:20 "A non-canonical-PPARγ/RXRα-binding sequence regulates leptin expression in response to changes in adipose tissue mass"
 Yinxin Zhang, The Rockefeller University
- 11:20 11:35**"IDOL regulates systemic energy balance through control of CNS VLDLR expression"**Stephen Lee, University of California, Los Angeles

11:35 – 11:50	"Melanocortin-4 receptor expression in the ventromedial hypothalamus is dynamically regulated by estradiol and contributes to metabolic homeostasis specifically in females" William Kraus, University of California, San Francisco
11:50 – 4:30	Free time
4:30 -6:00	Poster Session 2, Ballroom, Victorian Building

6:00 – 7:15 Dinner, Ballroom, Victorian Building

7:15 – 9:45 pm

Session 4: CNS Pathways Regulating Peripheral Metabolism, Ballroom, Victorian Building Session Chair: Jay Horton, University of Texas Southwestern Medical Center

7:15 – 7:20	Journal of Clinical Investigation Lectureship Award Introduction Corinne Williams, Science Editor, JCI
7:20 – 7:55	<u>Journal of Clinical Investigation Award Lecture</u> "Mitochondria function in the CNS" Sabrina Diano, Yale University
7:55 – 8:00	Journal of Lipid Research Lectureship Award Introduction Edward Dennis, Editor, JLR
8:00 – 8:35	<u>Journal of Lipid Research Award Lecture</u> " CNS and metabolism" Jens Brüning, MPI for Metabolism Research, Cologne, Germany
8:35 – 9:10	"Adipose tissue and the nervous system" Ana Domingos, Instituto Gulbenkia de Ciencia, Portugal
9:10 – 9:45	"Lipoproteins and Alzheimer's disease"

Joachim Herz, UT Southwestern

Friday, March 9

8:30 – 10:45 am Session 5: Therapeutic strategies, Regent, Grande Hall Session Chair: Christopher Glass, University of California, San Diego			
8:30 – 9:05	"CNS pathways linking homeostatic and reward pathways" Jeffrey Friedman, The Rockefeller University		
9:05 – 9:20	"Disruption of Steroid Receptor Coactivator-1 Signaling is Associated with Obesity" Yong Xu, Baylor College of Medicine		
9:20 – 9:35	Coffee break		
9:35 – 10:10	"Neuroendocrine polypharmacy" Matthias Tschöp, Helmholtz Institute for Diabetes and Obesity, Germany		
10:10 – 10:45	"Melanocortin receptor regulation of energy balance" Roger Cone, University of Michigan		
10:45	Closing		

Poster Presentations

= Abstract/Board Number

		1	
1	C2 domain–phosphorylated protein (CDP138) involved in hypothalamic protein trafficking and energy balance	13	3D structure of human plasma very low- density lipoprotein and intermediate-density lipoprotein by individual particle cryo-electron tomography
2	Liver X receptors protect dorsal root ganglion neurons from Western diet– induced endoplasmic reticulum stress: Potential role in obesity-induced neuropathy	14	Farnesoid X receptor activation by obeticholic acid reduces plasma low-density lipoprotein (LDL)-cholesterol in mice by up-regulating hepatic LDL receptor via a post-transcriptional mechanism
3	A TRPC5-TRPC1-CaV3 complex mediates leptin-induced excitability in hypothalamic neurons	15	FGF21, a liver hormone that inhibits alcohol intake in mice, increases in human circulation after acute alcohol ingestion and 3 days of binge drinking at Oktoberfest
4	Disruption of steroid receptor coactivator-1 signaling is associated with obesity	16	Dysregulated leptin gene expression leads to a leptin-responsive form of obesity
5	Stepwise processing analyses of the single-turnover PCSK9 protease reveal its substrate sequence specificity and link clinical genotype to lipid phenotype	17	Spontaneous non-alcoholic fatty-liver disease, non-alcoholic steatohepatitis, and hepatocellular carcinoma in mice with hepatocyte-specific disruption of Jak2 is reversed in mice with concomitant disruption of Jak2 in both liver and adipose tissue
6	Investigating key effectors of PCSK9 processing and low-density lipoprotein receptor degradation	18	The new role of lipin1 in myogenic progenitor differentiation to muscle and adipose tissues
7	A non-canonical PPARγ/RXRα-binding sequence regulates leptin expression in response to changes in adipose tissue mass	19	Somatic disruption of LdIr with AAV-CRISPR as a novel method for atherosclerosis studies
8	A strategy for discovery of endocrine interactions with application to whole- body metabolism	20	Copper regulates energy metabolism in adipocytes through semicarbazide-sensitive amine oxidase
9	Engagement of an agouti-related protein–dorsal raphe neural circuit in exclusive control of energy expenditure but not appetite	21	The anti-obesity effects of FGF19 and FGF21 require β -Klotho in the central nervous system
10	Deciphering a novel neural circuit bridging the control of feeding and mood disorders	22	Structural basis of the lipid transfer mediated by phospholipid transfer protein
11	Brain serotonin neurons project to segregated downstream targets to control hunger-driven feeding and hedonic feeding	23	New volume-fluorescence imaging technique reveals the key role of local sympathetic arborizations in white adipose tissue metabolism
12	Deciphering a GABAergic neural circuit in dominant control of leptin-mediated feeding, body weight, and glucose homeostasis	24	A new paradigm in atherosclerotic calcification-closure of antioxidant paradox

25	Sustained diabeter remission induced by	27	A novel long acting ECE21 analogue
25	Sustained diabetes remission induced by the action of fibroblast growth factor 1 (FGF1) in the hypothalamic arcuate nucleus	37	A novel long-acting FGF21 analogue significantly improves liver steatosis and inflammation and halts progression of fibrosis in preclinical models of NASH
26	The role of the KATP channel in the mesolimbic system of a high-fat diet- induced depression mouse model	38	Impact of AGPAT2 deficiency on the mRNA levels of enzymes involved in the glycerolipid synthesis in specific structures of the mouse brain
27	Fibroblast growth factor 21 is a protective pancreatic digestive enzyme secretagogue	39	Melanocortin regulation of histamine neuron activity
28	Eicosapentaenoic acid has a membrane orientation that correlates with potent antioxidant activity and reduced lipid disordering as compared with docosahexaenoic acid: X-ray diffraction analysis	40	Oleoylethanolamide treatment reduces neurobehavioral deficits and the brain pathology in a mouse model of Gulf War illness
29	Chemical composition and antioxidant and anticholine esterase potentials of essential oil of Monodora myristica (Africa nut) seeds	41	Brain-derived neurotrophic factor in the ventromedial hypothalamus: The intersection of exercise and anxiety?
30	Why do leptin levels fall with fasting?	42	Cannabinoid 1 receptor in steroidogenic factor 1 neurons regulates glucose homeostasis but not body weight
31	Identification of lipid biomarkers of inflammation and metabolic disturbances in Gulf War illness	43	APOE4-dependent deficits in brain lysophosphatidylcholine-docosahexaenoic acid and its transporter mfsd2a in Alzheimer's disease patients
32	The hormone fibroblast growth factor 21 (FGF21) stimulates drinking in response to ketogenic diet and alcohol	44	Molecular interactions of ANGPTL8 with ANGPTL3 and ANGPTL4: Consequences for activity of lipoprotein lipase
33	Human thermogenic adipose tissue development and metabolic disease	45	Phosphatidylcholine synthesis coordinates the metabolic response to dietary fat in the murine intestinal epithelium
34	c-Abl mediates tyrosine transcription factor EB phosphorylation and its cytoplasmic localization: Implications in the Niemann–Pick type C cholesterol lysosomal storage disease	46	12-Hydroxylated bile acids regulate food intake and gastric emptying through GPR119 in the intestine
35	Functional dissection of the central glucoregulatory circuits	47	Reactivation of myeloid cell TLR4 promotes LPS-induced acute inflammation and anorexia in mice
36	Macrophage-derived neurotrophic factor GDF15 mediates a novel neuro- immune interaction in adipose tissues	48	Role of de novo lipogenesis in white adipose tissue signaling to brown adipose tissue in regulating thermogenesis through neural circuitry

49	Identifying transcriptional targets of steroidogenic factor-1 in the ventromedial hypothalamus
50	Secreted micropeptides in the regulation of metabolic homeostasis
51	Functional analyses of DGAT enzymes in adipose tissue
52	Weight loss induced by FGF21 is
	associated with up-regulation of neurotensin and corticotropin-releasing hormone in dorsomedial hypothalamus and increased hepatic bile acid and glucose secretion in liver of DIO mice
53	Examining high-density lipoproteins in cerebral spinal fluid
54	Mechanisms coordinating de novo lipogenesis with triglyceride synthesis
55	IDOL regulates systemic energy balance through control of central nervous system very low-density lipoprotein receptor expression
56	Melanocortin-4 receptor expression in the ventromedial hypothalamus is dynamically regulated by estradiol and contributes to metabolic homeostasis specifically in females
57	Nitro-oleic acid distribution in lipoprotein triglycerides
58	Cellular and synaptic reorganization after exercise training

C2 domain–phosphorylated protein (CDP138) involved in hypothalamic protein trafficking and energy balance

Chaitanya Gavini¹, Emilie Verran², Joel Elmquist³, Tiemin Liu³, Virginie Mansuy-Aubert¹

¹Loyola University Chicago, Maywood, IL; ²Augustana College, Rock Island, IL; ³University of Texas Southwestern Medical School, Dallas, TX

1

Obesity is arguably the most crucial health concern, as 34% of the population in the United States is now obese. Melanocortin receptor 4 (MC4R) contributes to appetite control in hypothalamic neurons and is a promising target for anti-obesity treatments or drug development, but this is hindered by gaps in our understanding of its regulation. MC4R trafficking (to plasma membrane and/or endocytosis) has been shown to be key to regulation of energy balance and is altered in obesity and in the presence of lipids, but the cellular and molecular mechanisms of altered trafficking are largely unknown. Our studies identified a novel C2 domain-phosphorylated protein of 138 kDa (CDP138) that appears to contribute to the regulation of MC4R trafficking. We found that 1) the expression of CDP138 is altered by changes in diet, 2) baseline expression of CDP138 is lower in genetically obese and high fatfed mice compared with controls, 3) CDP138 colocalizes and interacts with MC4R complex, and, 4) CDP138 knockout mice exhibit pronounced obesity due to an increase in food intake compared with control mice when fed a high-fat diet. Based on these findings, we hypothesize that CDP138 could be a trafficking protein involved in central regulation of energy balance by modulating hypothalamic receptors via nutritional status. These studies provide evidence for a novel pathway and targets to develop therapeutic drugs aimed at efficiently deceasing body weight in obese patients.

Liver X receptors protect dorsal root ganglion neurons from Western dietinduced endoplasmic reticulum stress: Potential role in obesity-induced neuropathy

Raiza Bonomo¹, Chaitanya K. Gavini¹, Davis Thomas¹, David J. Mangelsdorf^{2,3}, Virginie A. Mansuy¹

¹Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL; ²Department of Pharmacology and ³Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX

Painful diabetic neuropathy (DN) affecting small sensory neurons is one of the most common complications of obesity and type 2 diabetes. Whereas emerging clinical evidence demonstrates that DN is associated with dyslipidemia, the complex molecular and cellular neurobiology triggering the disease is unknown. Emerging evidence demonstrates the important contribution of complex pathways, including endoplasmic reticulum stress and inflammation. Recent OMICs data analyzing the peripheral nervous system (PNS; dorsal root ganglia (DRG) and associated nerves) of obese individuals have highlighted alterations in lipid nuclear receptors, which provide novel insight into the onset of DN. Liver X receptors (LXRs) a and β are nuclear transcription factors that respond to cholesterol or fatty-acid metabolites. Nuclear LXRs control gene programs in liver cells, adipocytes, and macrophages to regulate lipid metabolism, inflammation, and endoplasmic reticulum (ER) stress, although the specific physiological role of LXRs in neurons is difficult to interpret, given its broad tissue expression. Our tissue-specific deletion model unmasks an important role of LXR in small sensory neurons in type 2 DN pathogenesis. Our results show that LXR deletion in sensory neurons worsens the hypersensitivity induced by a Western diet (WD) associated with changes in neuronal gene program (ribo-tag model). In addition, treatment with the LXR agonist GW3965 improves the WD-induced mechanical allodynia in vivo and protects from palmitate-induced ER stress in vitro, further confirming a protective role for LXR in DN. Our data suggest that the lipid sensor LXRs in small sensory neurons respond to dietary lipid to maintain normal PNS function in the face of high-fat nutrition. We suspect chronic WD-induced LXR signaling alterations that will lead to ER stress, resulting in PNS dysfunction and type 2 diabetic neuropathy phenotype.

A TRPC5-TRPC1-CaV3 complex mediates leptin-induced excitability in hypothalamic neurons

Paula P. Perissinotti¹, Elizabeth Martínez-Hernández¹, Erika S. Piedras-Rentería¹

¹Physiology Department, Loyola University Chicago, Maywood, IL

Leptin-induced depolarization in POMC neurons is mediated via the Jak2-PI3 kinase-PLCy pathway that ultimately activates TRPC channel activity, most likely a TRPC1-TRPC5 heteromer. This TRPC complex-induced depolarization is postulated to induce intracellular calcium release, subsequently triggering action potentials (APs) and increasing neuronal excitability; however, the downstream elements of this cascade are not well-defined yet. Here we used cultured neurons to establish the role of T-type Ca^{2+} channels in the leptin-signaling pathway in neuron excitability. Hypothalamic cultures were studied from 8 to 10 days in vitro. Immunocytochemistry analysis showed that POMC and NPY neurons were present in the culture, with POMC neurons being the majority of the cells analyzed (85% versus 15%, n = 182; p < 0.05, z test). Electrophysiological experiments confirmed that 86% of all neurons tested were leptin-activated, with their resting potential slightly depolarized, their rheobase decreased, and the number of APs increased upon application of 100 nm leptin. Interestingly, leptin application did not directly alter low voltage-activated currents, yet inhibition of Ttype channels using 10 µM NNC 55-0396 completely abolished the effect of leptin, similarly to the effect seen with a 100 µM concentration of the TRPC channel blocker 2-APB. Basal excitability was also prevented by the T-type channel blocker, as seen with post-inhibitory rebound experiments and ramp protocols. Evidence shows that ion channels work in coordination as part of macromolecular complexes within cells; thus, we tested whether TRPC1/5 channels could be detected in complex with CaV3 channels. Immunoprecipitation experiments showed that both TRPC1 and C5 co-precipitate with either CaV3.1 or CaV3.2 (and vice versa). Moreover, given that the Na/Ca permeability through TRPC1/5 channels is ~0.95, to test whether this channel complex is physiologically relevant in the leptin cascade, we assessed the effect of leptin in the presence of intracellular calcium buffers with similar affinities but different binding rate constants. Indeed, the fast chelator BAPTA precluded the local effect of leptin, whereas EGTA (>100 times slower buffer) did not alter the leptin response, corroborating that calcium influx through TRPC1/5 and/or its contribution to membrane depolarization recruit adjacent T-type channels within the complex, increasing neuronal excitability.

Disruption of steroid receptor coactivator-1 signaling is associated with obesity

Yongjie Yang¹, Agatha Klaauw², Liangru Zhu¹, Tessa Cacciottolo², Bert O'Malley¹, Sadaf Farooqi², Yong Xu¹

¹Baylor College of Medicine, Houston, TX; ²University of Cambridge, Cambridge, United Kingdom

Steroid receptor coactivator-1 (SRC-1) is a coactivator that modulates the activity of nuclear hormone receptors and transcription factors. Here, we showed that in the hypothalamus, SRC-1 interacts with phosphorylated STAT3 to potentiate the ability of leptin to stimulate transcription of the anorectic peptide pro-opiomelanocortin (Pomc). In mice, targeted deletion of SRC-1 in Pomc neurons attenuated their depolarization by leptin, decreased Pomc expression, and increased food intake, leading to diet-induced obesity. In humans, we identified 15 rare heterozygous variants in SRC-1 in 2,548 severely obese individuals. These variants impaired leptin-mediated Pomc reporter activity in cells, whereas four rare variants found in 1,117 non-obese controls did not. We generated a knockin mouse model of a human SRC-1 variant, which exhibited increased food intake and weight gain, providing additional evidence that disruption of SRC-1 contributes to human obesity. Targeting this molecular interaction to modulate leptin sensitivity may be useful in the treatment of obesity-related metabolic disease.

Stepwise processing analyses of the single-turnover PCSK9 protease reveal its substrate sequence specificity and link clinical genotype to lipid phenotype

John S. Chorba^{1,2,3}, Adri M. Galvan^{2,3}, Kevan M. Shokat^{2,3}

¹Division of Cardiology and Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA; ²Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA; ³Howard Hughes Medical Institute, San Francisco, CA

Proprotein convertase subtilisin/kexin type 9 (PCSK9) down-regulates the low-density lipoprotein (LDL) receptor (LDL-R), elevating LDL cholesterol and accelerating atherosclerotic heart disease, making it a promising cardiovascular drug target. To achieve its maximal effect on the LDL-R, PCSK9 requires autoproteolysis. After cleavage, PCSK9 retains its prodomain in the active site as a self-inhibitor. Unlike other proprotein convertases, however, this retention is permanent, inhibiting any further protease activity for the remainder of its life cycle. Such inhibition has proven a major challenge to a complete biochemical characterization of PCSK9's proteolytic function, which could inform therapeutic approaches against its hypercholesterolemic effects. To address this challenge, we employed a cell-based, highthroughput method using a luciferase readout to evaluate the single-turnover PCSK9 proteolytic event. We combined this method with saturation mutagenesis libraries to interrogate the sequence specificities of both PCSK9 cleavage and proteolysis-independent secretion. Our results highlight several key differences in sequence identity between these two steps, complement known structural data, and suggest that PCSK9 self-proteolysis is the rate-limiting step of secretion. Additionally, we found that for missense single-nucleotide polymorphisms (SNPs) within PCSK9, alterations in both proteolysis and secretion are common. Last, we show that some SNPs allosterically modulate PCSK9's substrate sequence specificity. Our findings indicate that PCSK9 proteolysis acts as a commonly perturbed but critical switch in controlling lipid homeostasis and provide a new hope for the development of small-molecule PCSK9 inhibitors.

Investigating key effectors of PCSK9 processing and low-density lipoprotein receptor degradation

Adri M. Galvan^{1,2}, John S. Chorba³, Kevan M. Shokat¹

6

¹Department of Molecular and Cellular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA; ²Pennsylvania State University College of Medicine, Hershey, PA; ³Division of Cardiology and Department of Medicine, Zuckerberg San Francisco General and University of California, San Francisco, CA

Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds the LDL receptor (LDL-R) and induces lysosome-mediated degradation, increasing LDL cholesterol (LDL-C) and, consequently, cardiovascular risk. Thus, PCSK9 has emerged as a prime therapeutic target against heart disease. Self-proteolysis of PCSK9 produces a mature, yet catalytically inactive protein that is shuttled extracellularly to bind and chaperone LDL-R for degradation. We previously identified PCSK9 processing as two independent mechanisms: proteolysis and secretion. Whereas PCSK9 production involves two steps, little is known about modulators of PCSK9 and LDL-R binding. Studies have shown LDL-C to inhibit PCSK9-mediated degradation, and recently, heparan sulfate proteoglycans were found to be necessary chaperones for the LDL-R/PCSK9 interaction. Using a high-throughput luminescence assay, we investigated the relationship of these two effector proteins on PCSK9 processing, specifically determining the mechanism of inhibition of LDL-C. We also compared the effects of LDL-C variants, such as oxidized LDL-C and lipoprotein(a), on the hindrance of PCSK9-mediated degradation. With our gained insight into modulators of PCSK9 metabolism, we aim to expand prospective targets for small-molecule inhibitors of PCSK9.

A non-canonical PPARγ/RXRα-binding sequence regulates leptin expression in response to changes in adipose tissue mass

Yinxin Zhang^{1,2}, Robert Roeder¹, Jeffrey Friedman^{1,2}

7

¹Rockefeller University, New York, NY; ²Howard Hughes Medical Institute, New York, NY

Leptin expression decreases after fat loss and is increased when obesity develops, and this quantitative regulation is essential for the homeostatic control of fat mass. We previously reported that a distant leptin enhancer (LE1), 16 kb upstream from the transcription start site (TSS), confers fat-specific expression in a BAC transgenic luciferase reporter mouse (BACTG). However, this and the other elements we identified do not appear to account for changes in leptin expression that accompany changes in adipose mass. In this report, we used ATAC-seq to identify a 17-bp non-canonical PPARγ/RXRα-binding site leptin-regulatory element 1 (LepRE1) and found that it is essential for the fat-regulated control of leptin expression. Whereas BACTG reporter mice with mutations in this sequence still show fat-specific reporter expression, luciferase is no longer decreased after food restriction and weight loss. Similarly, the increased expression of leptin reporter associated with obesity is also severely impaired. A functionally analogous LepRE1 site is also found in a second redundant DNA-regulatory element 13 kb downstream of the TSS. These data uncouple the mechanisms conferring gualitative and guantitative expression of the leptin gene and further suggest that a factor(s) that binds to LepRE1 quantitatively controls leptin expression and may be a component(s) of a lipid-sensing system in adipocytes.

A strategy for discovery of endocrine interactions with application to whole-body metabolism

Marcus M. Seldin¹, Simon Koplev², Prashant Rajbhandari¹, Laurent Vergnes¹, Peter Tontonoz¹, Karen Reue¹, Johan L. M. Björkegren², Aldons J. Lusis¹

¹UCLA, Los Angeles, CA; ²Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY

Inter-tissue communication via secreted proteins has been established as a vital mechanism for proper physiologic homeostasis. Here, we report a bioinformatics framework that uses natural variation in transcript levels across tissues in a population to identify and functionally annotate endocrine circuits. This method, termed quantitative endocrine network interaction estimation (QENIE), can be applied to any collection of organs, tissues, or cell types sampled from a genetically diverse population and profiled using omics platforms. Many of the topranked candidates for each tissue-tissue axis uncovered by this method already have established mechanisms of endocrine communication, validating the approach. These include leptin, adiponectin, ghrelin, and many other key regulators of physiology. To prioritize discovery of putative endocrine factors, we considered relevant physiologic and clinical traits along with publicly available resources on tissue-specific gene expression. These efforts led to the identification of two new endocrine factors. The first is an adipose-derived protein, lipocalin-5, which enhances skeletal muscle mitochondrial activity, resulting in increased lean body mass and improved insulin sensitivity. The second involves a hepatic secreted protein (notum), which can promote adipose tissue thermogenesis, resulting in improved resistance to cold and increased energy expenditure *in vivo*. To demonstrate the general applicability of the approach, we identify and validate in vivo three additional secreted molecules involving communication between adipose and heart (SMOC1 and ITIH5) and within aorta (PPBP). Additionally, we provide evidence for the applicability of the method to human omics data. In conclusion, we have developed a population-based approach for identifying novel communication axes between tissues and cell types using correlation structure that is generally applicable to omics data sets.

Engagement of an agouti-related protein-dorsal raphe neural circuit in exclusive control of energy expenditure but not appetite

Yong Han¹, Guobin Xia¹, Dollada Srisai², Fantao Meng³, Yanlin He¹, Sodikdjon Kodirov^{2,4}, Monica Farias¹, István Tóth⁵, Amy Lee², Marcelo O. Dietri^{6,7}, Yong Xu¹, Qi Wu¹

¹Baylor College of Medicine, Houston, TX; ²University of Iowa College of Medicine, Iowa City, IA; ³University of Texas Southwestern Medical Center, Dallas, TX; ⁴Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA; ⁵Szent Istvan University, Budapest, Hungary; ⁶Yale University School of Medicine, New Haven, CT; ⁷Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Agouti-related protein (AgRP) neurons in the arcuate nucleus potently promote food intake and suppress energy expenditure. Whereas their role in promotion of food intake has been investigated, the neural circuit and associated neurotransmitter signaling underlying the AgRP neurons in regulation of energy expenditure are unclear. In this report, we show that acute ablation of a subpopulation of AgRP neurons projecting to the dorsal part of dorsal raphe nucleus (dDRN) results in normal food intake but potently augments energy expenditure, as indicated by increased intrascapular brown adipose tissue (iBAT) temperature, core body temperature, and oxygen consumption. Activation of AgRP projections to the dDRN by opto-/chemogenetics suppressed iBAT temperature without affecting food intake. Intriguingly, optogenetic activation of the AgRP-dDRN circuit abolished leptin-mediated increase of iBAT temperature. Furthermore, administration of AgRP to the dDRN caused significant inhibition of energy expenditure, but not feeding, in a dosedependent manner. In contrast, microinjection of melanotan II (MTII), a MC4R agonist, into the dDRN increased energy expenditure. Calcium imaging, virus-mediated tracing, electron microscopy, and electrophysiological analysis indicated that AgRP directly modulates activity of serotonergic neurons in the dDRN by suppression of MC4R signaling. Genetic reactivation of MC4R in the dDRN increases thermogenesis and oxygen consumption without affecting food intake. Chemogenetic activation of 5-HT neurons in the dDRN causes significant increase in energy expenditure without changing food intake, which can abolish AgRP-mediated suppression of thermogenesis. Conversely, inhibition of these neurons leads to intact feeding yet decreased energy expenditure. Surprisingly, genetic inactivation of Tph2 in the dDRN influences energy expenditure but not feeding, which can abolish AgRP neuron-mediated energy expenditure. Last, we showed that the AgRP-DRN neural circuit mediates energy expenditure by stimulation of iBAT and promotion of beige intrascapular white adipose tissue. Together, these findings reveal a subpopulation of AgRP neurons that distinctly mediates energy expenditure by suppression of serotonergic signaling in the DRN via a MC4R-dependent mechanism.

Deciphering a novel neural circuit bridging the control of feeding and mood disorders

Guobin Xia¹, Yong Han¹, Fantao Meng², Yanlin He¹, Dollada Srisai³, Monica Farias¹, Yong Xu¹, Qi Wu¹

¹Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX; ²Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX; ³Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA

Obesity is co-morbid with major neurological diseases, such as depression, anxiety, and ADHD. So far, neural mechanisms underlying the functional linkage between body weight control and metal states are scarce. We identify a neural circuit in a cross-control of appetite and mood states. Genetic ablation of a subset of AgRP neurons projecting to the dBNST (AgRPARC-dBNST) or rapid inactivation of their GABA biosynthesis induces anxiety and depression-like behaviors, which can be fully reversed by chronic infusion of bretazenil, a GABA_A receptor partial agonist, into the dBNST. Optogenetic stimulation of the AgRPARC-BNST circuit significantly enhances the anxiety and depression level, whereas chemogenetic activation of the post-synaptic MC4R^{dBNST} neurons leads to opposite responses. Notably, such manipulations impose no acute effect on feeding and body weight. Furthermore, phenotypes induced by ablation of the AgRPdBNST neurons are completely restored by chemogenetic silence of the MC4R^{dBNST} neurons. *Htr3a*, encoding the 5-HT₃ receptor A subunits, displays robust differential expression profiles in the MC4R^{dBNST} neurons. Suppression of the 5-HT₃R signaling in the dBNST or inactivation of the 5-HTDRN-dBNST pathway abolishes the anxiety and depression-like behaviors in the AgRPARC-dBNST ablation model. In contrast, mice with genetic deletion of 5-HT biosynthesis within the 5HT^{DRN-dBNST} neurons display anxiolytic and antidepression responses. We further identify GABA_A receptor a5 subunits (encoded by *Gabra5* gene) as the major inhibitory signaling within the MC4R^{dBNST} neurons that counteracts the excitatory signals through the 5-HT₃R. Using the CRISPR/Cas9 and RNAi gene editing techniques, rapid and specific deletion of *Gabra5* within the MC4R^{dBNST} neurons causes severe anxiety and depression, which is completely rescued as induced by genetic suppression of the 5HT₃R receptor. Interestingly, mice with chronic high-fat diet (HFD) treatment display significant anxiety and depression. In vivo calcium optometry results show a bidirectional modulation of MC4R^{dBNST} neurons in response to HFD and fasting. Importantly, HFD-induced mental dysregulation is fully reversible upon chemogenetic inhibition, suppression of 5HT₃R signaling, or overexpression of GABA_A receptor $\alpha 5$ of MC4R^{dBNST} neurons. Together, we identify the ARC^{AgRP::GABA}-dBNST^{MC4R::GABRA5::5HT3R}-DRN^{5-HT} circuit serving as a critical reciprocal linkage between feeding control and mental states, advocating a conceptual framework in discovery of dual therapeutics for obesity and mental diseases.

Brain serotonin neurons project to segregated downstream targets to control hunger-driven feeding and hedonic feeding

Xing Cai¹, Yanlin He¹, Pingwen Xu¹, Yongjie Yang¹, Chunmei Wang¹, Ilirjana Hyseni¹, Yong Xu¹

¹Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX

Feeding can be driven by hunger (a state of nutritional deficit) to ensure survival. Feeding can also be triggered by hedonic properties of certain foods (e.g. Western diets) in the absence of nutritional deficit. Dysregulations of hunger-driven feeding and hedonic feeding both contribute to development of obesity. Better understanding the neurobiological mechanisms for these two types of feeding behaviors is essential to develop rational strategies to combat obesity and related co-morbidities, including diabetes. Emerging evidence and our preliminary data demonstrated a critical role of brain serotonin (5-HT) actions in suppressing both hunger-driven feeding and hedonic feeding. The aim of this study is to test that brain 5-HT neurons project to segregated downstream targets to control hunger-driven feeding and hedonic feeding, respectively. We used the "intermittent high fat-diet (HFD)" paradigm to assess hedonic feeding and the classic "fast-induced refeeding" paradigm to assess hungerdriven feeding. We also combined trans-synaptic neurotracing, wheat germ agglutinin (WGA), with channelrhodopsin-2 (ChR2)-assisted circuit mapping (WGA-CRACM), channelrhodopsin-2-assisted light stimulation, conditioned place preference (CPP), and food intake measurement. We found that 5-HT neurons in the dorsal Raphe Nuclei (5-HT^{DRN} neurons) innervate and activate pro-opiomelanocortin neurons in the arcuate nucleus of the hypothalamus (POMCARH neurons) via 5-HT 2C receptors (5-HT2CRs), and 5-HTDRN neurons also innervate and inhibit agouti-related peptide-expressing neurons in the ARH (AgRPARH neurons) via 5-HT1B receptors. Further, 5-HTDRN neurons innervated and activated dopamine neurons in the ventral tegmental area (DAVTA neurons) largely via 5-HT2CR-mediated mechanisms. ChR2-mediated photostimulation of the 5-HTDRN-ARH circuit suppressed hunger-driven feeding but had no effect on hedonic feeding. On the other hand, photostimulation of the 5-HT^{DRN}–VTA circuit suppressed hedonic feeding but did not affect hunger-driven feeding. In the CPP tests, the activation of the 5-HTDRN_ARH circuit transmitted a positive valence signal, but this signal was competed by the availability of low palatable foods (chow), whereas the 5-HT^{DRN}–VTA circuit transmitted a positive valence signal that was competed by hedonic foods (HFD). In conclusion, our studies identified the segregated 5-HTdownstream neural circuits controlling hedonic versus hunger-driven feeding, which may facilitate the development of selective serotonin-based therapies for obesity and associated diabetes.

Deciphering a GABAergic neural circuit in dominant control of leptinmediated feeding, body weight, and glucose homeostasis

Yong Han¹, Guobin Xia¹, Monica Farias¹, Qi Wu¹

¹Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX

The hormone leptin is known to play a major role in control of glucose metabolism and feeding behaviors by acting upon the LepR-signaling pathway that widely distributes in the central nervous system. Although several LepR-expressing neuronal groups were identified in distinct brain regions involving the control of various metabolic functions of leptin, a dominant neural circuit that mediates the physiological roles of leptin remains elusive, largely due to the inadequate phenotypes found in genetic mouse models as a result of developmental and neural compensations. In this report, a novel, non-sense suppressionbased, inducible genetic system is implemented to delete LepR signaling from AgRP neurons in the arcuate nucleus of adult animals within 4 days. Mice with rapid deletion of LepR from AgRP neurons show a drastic increase of food intake, massive weight gain, and severe glucose intolerance, developing in a rate with perfect manifestation of global leptin deficiency. Furthermore, a neural circuit comprising LepR-expressing AgRP neurons and downstream GABAergic neurons in the dorsomedial hypothalamic nucleus (DMH) is mapped by genetic and functional tracing approaches. Optogenetic manipulation of the AgRP^{LepR}-DMH^{GABA} neural circuit or the post-synaptic DMH^{MC4R} neurons strongly altered food intake and glucose tolerance in a bidirectional controlled manner. Among all major GABA_A subunits examined in the DMH, Gabra3 (encoding GABA_Aα3 subunits) displayed the most robust differential expression profiles in response to the inactivation of LepR^{AgRP} signaling. Using a CRISPR/Cas9 in vivo gene editing technique, loss of Gabra3 in MC4R^{DMH} neurons reduced food intake and enhanced glucose intolerance. Surprisingly, chronic infusion of bicuculline into the DMH fully reversed the obesity and glucose intolerance as a result of acute deletion of LepR^{AgRP} signaling. Furthermore, genetic ablation of GABADMH neurons blunted the actions of leptin upon the control of glucose metabolism and food intake. In conclusion, we unveil a novel ARC^{AgRP::GABA::LepR}-DMH^{GABA::MC4R::GABRA3} neural circuit and associated GABA_A receptor signaling system in fundamental control of leptin-associated obesity and diabetes.

3D structure of human plasma very low-density lipoprotein and intermediate-density lipoprotein by individual particle cryo-electron tomography

Gang Ren¹, Yadong Yu¹, Yu-Lin Kuang², Dongsheng Lei¹, Xiaobo Zhai¹, Meng Zhang¹, Ronald M. Krauss²

¹Lawrence Berkeley National Laboratory, Berkeley, CA; ²Children's Hospital Oakland Research Institute, Oakland, CA

Human lipoprotein assembled in the liver and secreted into the circulation supply energy to peripheral tissues. Very low-density lipoprotein (VLDL) and intermediate-density lipoprotein (IDL) lipolysis yields atherogenic low-density lipoproteins (LDLs) and VLDL remnants that strongly correlate with cardiovascular disease. Although the composition of VLDL particles has been well characterized, their 3D structure is elusive because of their variations in size, heterogeneity in composition, structural flexibility, and mobility in solution. Here, we employed cryo-electron microscopy and individual-particle electron tomography to study the 3D structure of individual VLDL and IDL particles (without averaging) both below and above their lipid phase transition temperatures. 3D reconstructions of VLDL and IDL and VLDL/IDL bound to antibodies revealed an unexpected polyhedral shape, in contrast to the generally accepted model of a spherical emulsion-like particle. The smaller curvature of surface lipids compared with high-density lipoprotein (HDL) may also reduce surface hydrophobicity, resulting in lower binding affinity to the hydrophobic distal end of the N-terminal β-barrel domain of cholesteryl ester transfer protein compared with HDL. The directional binding of cholesteryl ester transfer protein (CETP) to HDL and VLDL/IDL may explain the function of CETP in transferring triglycerides and cholesteryl esters between these particles. This first visualization of the 3D structure of VLDL/IDL could improve our understanding of the role of VLDL/IDL in atherogenesis.

Farnesoid X receptor activation by obeticholic acid reduces plasma lowdensity lipoprotein (LDL)-cholesterol in mice by up-regulating hepatic LDL receptor via a post-transcriptional mechanism

Amar B. Singh¹, Bin Dong¹, Fredric B. Kraemer¹, Jingwen Liu¹

¹Veterans Affairs Palo Alto Health Care System, Palo Alto, CA

The farnesoid X receptor (FXR) is a bile acid-activated nuclear receptor regulating bile acid and cholesterol metabolism. In mouse models, FXR activation attenuates development of atherosclerosis and reduces plasma total cholesterol (TC) and HDL-C. Our previous studies in hyperlipidemic hamsters showed that activation of FXR by obeticholic acid (OCA), an FXR agonist, lowered serum TC, HDL-C, and LDL-C. These effects were associated with increased expressions of SR-BI and LDL receptor (LDLR) in OCA-treated liver tissue. Whereas FXR mediated transcriptional activation of SR-BI, the major receptor for HDL-C, is well documented, molecular mechanisms underlying effects of FXR on LDLR expression in liver tissue have not been clearly defined. Here, we demonstrate that FXR activation by OCA in mice lowers serum LDL-C levels by up-regulating hepatic LDLR expression via a posttranscriptional mechanism involving LDLR mRNA-stabilizing protein HuR. We showed that administration of OCA to normolipidemic mice did not affect expressions of SREBP target genes, including PCSK9 and HMG-CoA reductase, but increased LDLR and HuR mRNA and protein levels, leading to reductions of LDL-C in circulation. To directly examine OCA effects on LDLR mRNA stability under *in vivo* conditions, we utilized transgenic mice (Alb-Luc-UTR) that express a luciferase-LDLR 3'-UTR transgene in the liver. OCA treatment led to significant rises in hepatic bioluminescence signals and Luc-UTR mRNA and LDLR mRNA levels as well as reductions in serum TC and LDL-C levels compared with vehicle-treated Alb-Luc-UTR mice. These effects were accompanied by up-regulation of hepatic HuR mRNA and protein levels in OCA-treated mice, whereas other LDLR mRNA-binding proteins were not affected by OCA treatment. Further studies in human primary hepatocytes and HepG2 cells corroborated our observations in mouse liver and demonstrated OCA-induced coordinated up-regulation of LDLR and HuR. Finally, utilizing siRNA technology, we demonstrate that knockdown of HuR attenuates OCA-induced LDLR mRNA and protein expressions in HepG2 cells. Altogether, our study is the first to demonstrate that FXR activation increases LDLR expression in liver tissue by increasing LDLR mRNA-stabilizing protein HuR, which is one underlying mechanism for FXR-mediated LDL-C-lowering effects observed in mice and possibly in other animal models.

FGF21, a liver hormone that inhibits alcohol intake in mice, increases in human circulation after acute alcohol ingestion and 3 days of binge drinking at Oktoberfest

Susanna Søberg^{1,2}, Emilie S. Andersen^{3,4}, Niels B. Dalgaard^{3,4}, Ida Jarlhelt¹, Nina L. Hansen³, Nina Hoffmann³, Anne Chenchar¹, Michal Jensen², Camilla Scheele^{1,2}, Trisha Grevengoed¹, Sam Trammell¹, Filip K. Knop^{1,3,4,5}, Matthew P. Gillum^{1,5}

¹Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen, Denmark; ²Center of Inflammation and Metabolism and Center for Physical Activity Research, Rigshospital, Copenhagen, Denmark; ³Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; ⁴Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; ⁵Contributed equally

Excessive alcohol consumption is a leading cause of global morbidity and mortality. However, knowledge of the biological factors that influence *ad libitum* alcohol intake may be incomplete. Two large studies recently linked variants at the KLB locus with levels of alcohol intake in humans. KLB encodes β -klotho, co-receptor for the liver-derived hormone fibroblast growth factor 21 (FGF21). In mice, FGF21 reduces alcohol intake, and human Fgf21 variants are enriched among heavy drinkers. Thus, the liver may limit alcohol consumption by secreting FGF21. However, whether full-length, active plasma FGF21 (FGF21(1–181)) levels in humans increase acutely or subchronically in response to alcohol ingestion is uncertain. We recruited 10 healthy, young male subjects to receive an oral water or alcohol bolus with concurrent blood sampling for FGF21(1– 181) measurement in plasma. In addition, we measured circulating FGF21(1–181) levels, liver stiffness, triglyceride, and other metabolic parameters in three healthy Danish men before and after consuming an average of 22.6 beers/person-day (4.4 g/kg-day of ethanol) for 3 days during Oktoberfest 2017 in Munich, Germany. We further correlated fasting FGF21(1–181) levels in 49 healthy, non-alcoholic subjects of mixed sex with reports of alcohol-related behaviors, emotional responses, and problems. Finally, we characterized the effect of recombinant human FGF21(1– 181) injection on voluntary alcohol intake in mice. We show that alcohol ingestion (25.3 g, or ~2.5 standard drinks) acutely increases plasma levels of FGF21(1–181) 3.4-fold in humans. We also find that binge drinking for 3 days at Oktoberfest is associated with a 2.1-fold increase in baseline FGF21-(1–181) levels, in contrast to minor deteriorations in metabolic and hepatic biomarkers. Nevertheless, basal FGF21(1–181) levels do not correlate with differences in self-reported alcoholrelated behaviors, responses, or problems in a small cohort of non-alcoholic subjects. Finally, we show that once-daily injection of recombinant human FGF21(1–181) reduces ad libitum alcohol intake by 21% in mice. We conclude that FGF21(1–181) is markedly increased in circulation by both acute and subchronic alcohol intake in humans and reduces alcohol intake in mice. These observations are consistent with the recently proposed role for FGF21(1–181) as a negativefeedback regulator of alcohol intake in humans.

Dysregulated leptin gene expression leads to a leptin-responsive form of obesity

O. S. Dallner¹, Y. Lu¹, K. Birsoy², K. Marinis³, E. Werner¹, G. Fayzikhodjaeva¹, M. Lazar³, J. Friedman^{1, 4, *}

¹Laboratory of Molecular Genetics, ²Laboratory of Metabolic Regulation and Genetics, and ⁴Howard Hughes Medical Institute, The Rockefeller University, New York, NY; ³Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA

Leptin is an adipocyte hormone that functions as an afferent signal in a negative feedback loop between the hypothalamus and adipose tissue to maintain homeostatic control of body weight (Haslam, D. W., and James, W. P. (2005) Lancet 366, 1197–1209). Leptin is expressed exclusively in adipocytes and is quantitatively regulated such that changes in fat mass correlate with changes in gene expression (Maffei, M. et al. (1995) Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc. Natl. Acad. Sci. U.S.A. 92, 6957–6960). However, although substantial progress in understanding the neural mechanisms of leptin action has been made, the molecular mechanisms controlling leptin gene expression in vivo are poorly understood (Friedman, J. M. (2009) Am. J. Clin. Nutr. 89, 9735–979S). A fuller understanding of the mechanism controlling leptin expression is of clinical importance, since low leptin levels can lead to an increase of food intake and body weight. Here, we report that adipocyte-specific and quantitative leptin expression is controlled by redundant cis elements and trans factors interacting with the proximal promoter in concert with an IncRNA (IncOb). Animals lacking IncOb develop obesity with lowered plasma leptin levels, confirming its role to quantitatively regulate the leptin gene. Diet-induced obese (DIO) animals lacking the IncOb RNA lose significant amounts of weight after leptin treatment, in contrast to control DIO animals, who do not. These results show that defects in the regulation of leptin gene expression can lead to a hypoleptinemic leptin-responsive form of obesity and provides a framework for elucidating the pathogenic mechanism in the subset of obese patients with low endogenous leptin levels.

Spontaneous non-alcoholic fatty-liver disease, non-alcoholic steatohepatitis, and hepatocellular carcinoma in mice with hepatocytespecific disruption of Jak2 is reversed in mice with concomitant disruption of Jak2 in both liver and adipose tissue

Kevin Corbit¹, Aras Mattis¹, Nevan Krogan¹, David Jimenez-Morales¹, Ethan J. Weiss¹

¹University of California, San Francisco, CA

17

Insulin sensitivity naturally declines with age and insulin resistance correlates with several age-associated diseases. The insulin/insulin-like growth factor (IGF) axis is the major aging regulatory node in metazoans. IGF production itself is mediated by growth hormone (GH), but how IGF/GH signaling promotes age-related pathologies is unknown. Previously, we showed that mice with hepatocyte-specific disruption of Jak2 (JAK2L) develop aggressive nonalcoholic fatty-liver disease (NAFLD). When crossed to mice with adipocyte-specific disruption of Jak2 (JAK2A), JAK2LA mice are nearly completely protected from developing NAFLD. Given that NAFLD is known to progress to non-alcoholic steatohepatitis (NASH), we examined mice after 2 years of aging. We found that JAK2L mice develop NASH that closely resembles human NASH. Strikingly, 64% of JAK2L mice develop hepatocellular carcinoma (HCC), on regular chow. Remarkably, NAFLD, NASH, and HCC development in JAK2L mice all depend on adipocyte Jak2, as concomitant disruption of hepatocyte and adipocyte Jak2 (JAK2LA) reduces the severity and onset of fatty liver, inflammation, fibrosis, and carcinogenesis. Aged JAK2L mice are also lipodystrophic and have impaired adipose tissue mTORC1 signaling during the fasting-to-fed transition, whereas loss of adipocyte Jak2 prevents lipodystrophy and age-associated insulin resistance. Our results demonstrate that adipocytes mediate the development of liver pathologies and insulin resistance and suggest a paradigm shift toward targeting the adipocyte for treatment of metabolic liver disease, NASH, and HCC.

The new role of lipin1 in myogenic progenitor differentiation to muscle and adipose tissues

Abdulrahman Jama¹, Dengtong Huang¹, Abdullah A. Alshudukhi¹, Karim Nadra², Roman Chrast², Hongmei Ren¹

¹Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH; ²Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland

Our previous work in global lipin1-deficient (fld) mice demonstrated that lipin1 played a novel role in skeletal muscle (SM) regeneration. Brown adipose tissue (BAT) and skeletal muscle originate from common myogenic factor 5-expressing (Myf5) progenitors. However, little is known about what controls the progenitors commit to the brown adipogenic lineage. This study using cell type–specific Myf5-cre;Lipin1fl/fl conditional knockout (Lipin1Myf5cKO) mice showed that lipin1 was a major determinant of SM development and BAT conversion. Depletion of lipin1 in Myf5⁺ progenitors in Lipin1Myf5cKO mice promotes brown adipose tissue conversion indicated by inhibition of skeletal muscle development and expanded brown adipose tissue formation in the dorsal cervical region compared with control littermates. Results from lipin1-deficient myoblasts suggested that lipin1 regulated myoblast differentiation through the protein kinase C (PKC)/histone deacetylase 5 (HDAC5)/myocytespecific enhancer factor 2C (MEF2c):MyoD-mediated pathway. Lipin1 deficiency leads to the suppression of PKC isoform activities, as well as the inhibition of their downstream target, class II deacetylase HDAC5 nuclear export, and consequently, the inhibition of MEF2c and MyoD expression in the SM of Lipin1Myf5cKO mice. Inhibition of MyoD induced accumulation of Pax7 expression levels, which may lead to an increased propensity for satellite cell selfrenewal rather than progression through myogenic differentiation. Our findings provide insights into the signaling circuitry that regulates skeletal muscle development and have important implications for developing therapies aimed at treating muscular dystrophy.

Somatic disruption of LdIr with AAV-CRISPR as a novel method for atherosclerosis studies

Kelsey E. Jarrett¹, Alexandria M. Doerfler¹, Ayrea Hurley¹, Rachel Hsu¹, Marco De Giorgi¹, Ang Li², Henry J. Pownall³, Ciaran Lee², Gang Bao², William R. Lagor¹

¹Baylor College of Medicine, Houston TX; ²Rice University, Houston TX; ³Houston Methodist Research Institute, Houston TX

Current methods to study genetic contributions to atherosclerosis are time-consuming and expensive. The Ldlr and Apoe knockout (KO) models are currently the gold standard, but they require extensive backcrossing to homozygosity and congenic status on the C57BI/6 background. More rapid and efficient methods are needed to investigate the ever-growing list of candidate genes identified through human genetics. The clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) genome editing system is a powerful new tool for gene disruption. We hypothesized that atherosclerotic lesion could be generated in adult mice via liver-directed somatic disruption of Ldlr using an all-in-one AAV-CRISPR vector, thus bypassing the need to cross to Ldlr KO mice. An adeno-associated viral (AAV) vector based on serotype 8 was used to deliver *Staphylococcus aureus* Cas9 (SaCas9) and small guide RNA targeting the Ldlr gene (AAV-CRISPR). This vector was compared headto-head with AAV-mediated overexpression of a human gain-of-function variant of PCSK9, a recent model that mimics Ldlr KO through promoting degradation of the Ldlr protein. Adult C57BL6/J mice received either 1) saline, 2) AAV-CRISPR, or 3) AAV-hPCSK9 versus 4) germ line Ldlr KO mice. Animals were placed on a Western diet for 20 weeks and followed for changes in plasma lipids, atherosclerotic lesion burden, and editing efficiency. Disruption of Ldlr with AAV-CRISPR vector was robust, resulting in severe hypercholesterolemia and atherosclerosis on a standard Western diet. AAV-hPCSK9 also produced atherosclerotic lesions, as expected from previous reports. Lesion burden was slightly lower with AAV-CRISPR and AAV-hPCSK9 relative to germ line Ldlr KO mice. Unexpected sexual dimorphism was also observed with AAV-CRISPR, with the greatest effects seen in male mice. In summary, our allin-one AAV-CRISPR vector is a rapid and efficient alternative to the use of Ldlr KO mice to study atherosclerosis.

Copper regulates energy metabolism in adipocytes through semicarbazide-sensitive amine oxidase

20

Haojun Yang¹, Martina Ralle², Michael J. Wolfgang¹, Jason Burkhead³, Chin-Nung Liu¹, Susana Rodriguez¹, Jack H. Kaplan⁴, Guang Wong¹, Svetlana Lutsenko¹

¹Johns Hopkins University, Baltimore, MD; ²Oregon Health and Science University, Portland, OR; ³University of Alaska, Anchorage, AK; ⁴University of Illinois, Chicago, IL

Differentiation of preadipocytes into mature fat cells is associated with a complex remodeling of transcriptional and metabolic programs. We show that copper homeostasis is an essential contributor to this remodeling. Upon differentiation, copper uptake increases to provide more copper to mitochondria and, especially, to the secretory pathway. This process is accommodated by up-regulation of the copper transporters Ctr1 and ATP7A. Increased copper flow to the secretory pathway is required to activate a simultaneously and markedly up-regulated semicarbazide-sensitive amine oxidase (SSAO). Copper deficiency or a limited transfer of copper to the secretory pathway causes inhibition of SSAO and an increase in the adipocyte volume and lipid content. Complete inactivation of SSAO results in adipocyte hypertrophy, increased fatty acid uptake and storage, down-regulation of pathways involved in glycolysis, and decreased sensitivity of glucose uptake to insulin. The addition of active recombinant SSAO during adipocyte differentiation prevents changes in the proteome and adipocyte enlargement. Altogether, the results demonstrate an essential role for copper in adipocyte maturation and function, identify a new physiological role for SSAO, and pave the way to better understanding of the role of a frequently observed copper misbalance in obesity.

The anti-obesity effects of FGF19 and FGF21 require β -Klotho in the central nervous system

Tian Lan^{1,2}, Steven Kliewer^{1,2}, David Mangelsdorf^{1,3}

21

¹Department of Pharmacology, ²Department of Molecular Biology and ³Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX

The pharmacologic effects of fibroblast growth factor 19 (FGF19) and FGF21 to increase metabolic rate and cause weight loss have been appreciated for many years. FGF19 and FGF21 belong to the family of endocrine FGFs that can enter the circulation and function as hormones. Signaling by FGF19 and FGF21 is mediated through a receptor complex composed of FGF receptors (FGFRs) and β-Klotho (KLB). The tissue distribution of KLB together with the FGF19- and FGF21-specific FGFR isoforms define the tissue-specific actions of FGF19 and FGF21. For example, the physiologic role of FGF19 as a postprandial intestinal hormone to repress hepatic bile acid synthesis is mediated by FGFR4/KLB, an FGF19-specific receptor expressed in the liver. Among the FGFR/KLB combinations, FGFR1c/KLB is activated by both FGF19 and FGF21. Previous gene expression profiling from our laboratory showed that FGFR1c/KLB is expressed in the adipose tissue and central nervous system (CNS), the two organs that are critical in the control of metabolic rate and body weight. We hypothesized that the pharmacologic actions of FGF19 and FGF21 are mediated through similar pathways involving effects on both the adipose tissue and CNS. To test this hypothesis, adipose tissueand CNS-selective KLB knockout mice were generated and treated with FGF19 and FGF21. Our results suggest that FGF19 and FGF21 both act centrally to induce body weight loss. In contrast, although not required for weight loss effects, adipose tissue expression of KLB is crucial for mediating the acute insulin-sensitizing effects of the two hormones.

Structural basis of the lipid transfer mediated by phospholipid transfer protein

Jennifer Li¹, Meng Zhang², Xiaobo Zhai², John J. Albers³, Simona Vuletic³, Gang Ren²

¹Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA; ²Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA; ³Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA

Human phospholipid transfer protein (PLTP) mediates the transfer of phospholipids among atheroprotective high-density lipoproteins (HDL) and atherogenic low-density lipoproteins (LDL) by an unknown mechanism. Delineating PLTP-mediated lipid transfer mechanism would be the first step toward understanding the underlying mechanisms, which is crucial for the treatment strategies of lipoprotein abnormalities and cardiovascular diseases. However, the structure and functionality of PLTP are not clearly understood yet. In this paper, using electron microscopy, optimized negative-staining, and single-particle image processing, we show that PLTP features a banana-shaped structure (length ~129 Å, width ~36 Å) with its N terminus being the more globular- and straight-shaped end and the C terminus being the more curve-shaped end. We hypothesize that the more globular-shaped and straight-shaped end might be the N terminus of PLTP, and the more curved end might be the C terminus of PLTP. Adding PLTP to HDL complex results in formation of an HDL-PLTP binary complex with ~80 Å of rod-shaped PLTP protruding from quasi-spherical HDL, whereas ~50 Å of the curvier N-terminal end of PLTP penetrates the HDL structure. Furthermore, adding PLTP to the complex of both HDL and LDL leads to the formation of a ternary complex with one terminal domain of PLTP penetrating into HD and another terminal domain of PLTP penetrating into LDL. These observations provide direct structural features of PLTP and its association with either HDL alone or HDL and LDL complex, which provides the direct molecular basis underlying the PLTP-mediated lipid transfer mechanisms.

New volume-fluorescence imaging technique reveals the key role of local sympathetic arborizations in white adipose tissue metabolism

Haochen Jiang¹, Ying Cao², Huanhuan Wang², Xiaofan Ding¹, Wenwen Zeng¹

¹Tsinghua University, Beijing, China; ²Peking University, Beijing, China

Efferent signals from the central nervous system have essential roles in controlling the metabolism of white adipose tissues (WAT), and malfunction of such neural regulation leads to obesity and other profound metabolic disorders. We have previously reported that local sympathetic fibers in WAT can form synapse-like structures on adjpocytes, and destruction of these neural structures inhibited the leptin-stimulated lipolysis (Zeng et al. (2015) Cell Rep. 10, 1226-1238). Recently, we have established a new volume fluorescence-imaging technique for adipose tissues, enabling the visualization of the intra-adipose neural network at single-fiber resolution on the whole-tissue level. Aided by this powerful technique, we observed that sympathetic arborizations are prevalent in mouse inguinal WAT, at a density that had been drastically underestimated by the conventional methods of immunohistochemistry. In fact, sympathetic fibers are in close apposition to over 90% of adipocytes in inguinal WAT. Furthermore, we found that genetic deletion of the neurotrophin receptor TrkA ablates the intraadipose sympathetic network and, as a result, blocks the cold-induced beiging process of inguinal WAT. These results have therefore added to the essential functions of sympathetic efferent signal in regulating the WAT metabolism (Jiang et al. (2017) Cell Metab. 26, 429-436.e4). Also, we have exploited the new volume fluorescence-imaging technique to examine the remodeling process (i.e. plasticity) of local sympathetic arborizations in WAT. Interestingly, we observed that intraadipose sympathetic arborizations decrease significantly in the obese condition (e.g. in the ob/ob mutant mice or in the high-fat diet-fed mice. In contrast, the density of sympathetic arborizations in inguinal WAT increases within days upon cold exposure, which is reversible by the thermoneutral recovery. Moreover, we demonstrated that this temperature-sensitive sympathetic plasticity is regulated by the nerve growth factor (NGF) and TrkA signal. Functional blockage of NGF or TrkA can effectively inhibit the cold-induced beiging process of inguinal WAT. These results have together implicated a new layer of regulation in the sympathetic efferent control of WAT metabolism (Cao et al., submitted for publication). In summary, our research has revealed the key structural basis connecting neural efferent signals with individual adipocytes, which has important implications for better understanding of the WAT metabolism under physiological and disease conditions.

A new paradigm in atherosclerotic calcification-closure of antioxidant paradox

Sampath Parthasarathy¹, Aluganti N. Chandrakala¹, Aladdin Riad¹

¹University of Central Florida, Orlando, Florida

Atherosclerotic lesions are formed by deposition of lipids in the intima of arteries. Upon exposure to oxidative stresses, low-density lipoprotein (LDL) is converted to highly atherogenic oxidized LDL particles, contributing to disease development and progression. Advanced disease stages may result in calcification of lesions. This calcification process is important, as it has been shown to be associated with stable plaques that are less prone to rupture. Calcification is present in lipid-rich domains of lesions, and it is generally assumed that calcium is present as calcium phosphate; however, neither the composition of the mineralized calcium deposits nor its relationship to lipid peroxidation is known. We hypothesize that lipid peroxide-derived azelaic acid (AzA), a dicarboxylic acid formed from the oxidation of oxo-nonanoic acid, induces calcification in smooth muscle cells, thereby providing the link between calcification and overall plague burden, and association of calcification with the lipophilic region of the lesion. The potential of lipid peroxide-derived lipophilic dicarboxylic acid (DCA) to promote calcification upon exposure to vascular smooth muscle cells was tested. 13-Hydroperoxylinoleic acid (HPODE) treatment resulted in the cellular conversion to 9-oxononanoic acid and AzA, as determined by mass spectrometry analysis. Delivery of AzA via lysophosphatidylcholine micelles induced calcification of human aortic smooth muscle cells. AzA was identified in the mineralized calcium deposits of human atherosclerotic plaques. These results demonstrate that DCAs may contribute to atherosclerotic calcification, thus accounting for the latter's relationship to plague burden and association with lipids. This study also challenges the dogma that arterial calcification represents the deposition of calcium phosphate. In addition, the results also make a connection between the oxidation of LDL lipids with calcification. As the oxidation of proinflammatory aldehydes to benign carboxylic acids is inhibited by antioxidants, the present study could explain why vitamin E-tocopherol-like antioxidants failed in human clinical trials.

Sustained diabetes remission induced by the action of fibroblast growth factor 1 (FGF1) in the hypothalamic arcuate nucleus

Jenny M. Brown¹, Jarrad M. Scarlett^{1,2}, Miles E. Matsen¹, Hong T. Nguyen¹, Anna Secher³, Rasmus Jorgensen³, Gregory J. Morton¹, Michael W. Schwartz¹

¹Diabetes Institute, University of Washington, Seattle WA; ²Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle WA; ³Global Research, Novo Nordisk A/S, Maaloev, Denmark

Accumulating evidence suggests that the brain plays a key role in glucose homeostasis and thus is a potential target for the treatment of type 2 diabetes (T2D). Our recent finding that a single intracerebroventricular (icv) injection of FGF1 (3.0 µg) elicits sustained diabetes remission in rodent models of T2D supports this growing consensus. The aim of the current work was to pinpoint the brain area responsible for this action of FGF1. Although fibroblast growth factor receptors are expressed throughout the brain, our study was guided by our preliminary findings that 1) FGF receptor 1 and the specific integrin receptor ($\alpha_v \beta_3$) required for sustained FGF1 signaling are both concentrated in the hypothalamic arcuate nucleusmedian eminence (ARC-ME) and 2) neuronal activation and sustained induction of the MAP kinase/ERK pathway (required for FGF1-induced cell proliferation and DNA synthesis) occurs specifically in this brain area following icv FGF1 injection. We therefore hypothesized that in rodent models of T2D, an action in the ARC-ME (a brain area known to participate in glucose homeostasis) mediates the sustained diabetes remission elicited by icv FGF1 injection. To test this hypothesis, we investigated the effect of a single microinjection of a low dose of FGF1 into the ARC (0.3 µg bilaterally, for a total of 0.6 µg) of Zucker diabetic fatty rats, a model of T2D. We found that FGF1 action limited to the ARC area was sufficient to induce remission of hyperglycemia lasting >3 weeks, whereas intra-arcuate microinjection of saline vehicle was without effect (p < 0.05 versus vehicle). In contrast, icv injection of the same total FGF1 dose (0.6 µg) had no significant effect on glycemia, indicating that sustained diabetes remission induced by intra-ARC microinjection of FGF1 was not due to action at some other site following leakage into ventricular cerebrospinal fluid. Furthermore, microinjection into the ARC of the same low dose of FGF1 recapitulates the prolonged (5-h) ERK activation induced in this brain area by icv injection of a larger dose. These findings collectively support the hypothesis that FGF1 action on ARC-ME is sufficient to explain the sustained diabetes remission induced by icv administration of a larger dose.

The role of the K_{ATP} channel in the mesolimbic system of a high-fat diet-induced depression mouse model

Pei-Chun Chen^{1,2,3}, Yun-Wen Chen^{2,3,4}, Jie-Kuan Lin^{1,3}

26

¹Department of Physiology, ²Institute of Basic Medical Sciences, ³College of Medicine, and ⁴Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan

Obesity, one kind of metabolic disorder, is associated with many chronic diseases, and chronic positive energy balance causes the resistance of metabolic hormones, including leptin, which participate in the processing of medical depression. Clinically depressed patients have shown anhedonia, which also appears in patients with obesity, indicating a dysregulation in the mesolimbic dopamine system. Several studies indicate that potassium channels in the mesolimbic system regulate the firing rate of dopamine neurons. Thus, adenosine triphosphate (ATP)-sensitive K⁺ (K_{ATP}) channels, which are inward-rectifier potassium channels and act as a metabolic sensor to mediate electrical activity, may link to metabolic disorder and depression. Hence, we hypothesize that neuronal KATP channels in the mesolimbic dopamine system play a key role in obesity-induced depression. We found that 8-week-old B6 mice fed with 12 weeks of high-fat diet showed depressive-like behaviors, using a forced swim test and sucrose preference test. Analysis of catecholamine in the nucleus accumbens of high-fat diet-fed mice has further supported the depressive phenotype. Interestingly, total protein levels of the K_{ATP} channel were elevated in the high-fat diet–fed mice using immunoblotting and immunostaining assays. Implantation of miniosmotic pumps containing either KATP channel blocker showed improved glucose tolerance, insulin tolerance, and depressive behavior as well as triglyceride levels.

Fibroblast growth factor 21 is a protective pancreatic digestive enzyme secretagogue

27

Genaro Hernandez¹, Katie C. Coate², Curtis A. Thorne³, ShengYi Sun¹, Tao D. Le¹, Kevin Vale¹, Steven A. Kliewer¹, David J. Mangelsdorf¹

¹University of Texas Southwestern Medical Center, Dallas, TX; ²Samford University, Birmingham, AL; ³University of Arizona, Tucson, AZ

Fibroblast growth factor 21 (FGF21) is a hormone that regulates metabolism in response to stresses, such as starvation. FGF21 is abundantly expressed in the exocrine pancreas, where its physiologic function remains to be elucidated. Here, we show that FGF21 is induced in the exocrine pancreas by refeeding and regulates digestive enzyme levels in a paracrine/autocrine fashion. FGF21 lowers digestive enzyme levels by stimulating secretion directly on the acinar cell through its receptor complex, FGFR/β-Klotho, and downstream PLC-IP₃R signaling. However, unlike the post-prandial secretagogue CCK, FGF21 does not induce pancreatic protein synthesis. Furthermore, pharmacological administration of FGF21 reduces the severity of both cerulein-induced and endoscopic retrograde cholangiopancreatography–induced pancreatitis. Thus, pancreatic FGF21 is a digestive enzyme secretagogue that could be used pharmacologically against instances of pancreatitis.

Eicosapentaenoic acid has a membrane orientation that correlates with potent antioxidant activity and reduced lipid disordering as compared with docosahexaenoic acid: X-ray diffraction analysis

Richard P. Mason^{1,2}, Samuel C. Sherratt², Robert F. Jacob²

¹Brigham and Women's Hospital, Harvard Medical School, Boston, MA; ²Elucida Research LLC, Beverly, MA

The ω-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have distinct effects on rates of lipid oxidation, signal transduction pathways, and lipid raft formation, including cholesterol domains. These fatty acids have physiologic activities in the central nervous and cardiovascular systems. The basis for differences in their cellular effects may be due to their specific orientations in the membrane and subsequent effects on surrounding lipid structure and dynamics. Small-angle X-ray diffraction approaches were used to measure the effects of EPA and DHA on membrane structure composed of cholesterol at physiologic levels for vascular cells. Membrane vesicles composed of 1-palmitoyl-2-oleoylsn-glycero-3-phosphocholine (POPC) and cholesterol (C) (0.3 C:POPC mole ratio) were prepared and treated with vehicle, EPA, or DHA at a 1:10 mole ratio to POPC. The membrane structure was correlated with lipid fluidity, as determined by the apparent rotational correlation time (ARCT) measured for diphenylhexatriene. Electron density profiles generated from the diffraction data showed that EPA increased membrane hydrocarbon core electron density over a broad area, up to ± 20 Å from the membrane center, indicating an extended orientation for EPA that would be stabilized by van der Waals interactions with surrounding phospholipid acyl chains. By contrast, DHA increased electron density in the phospholipid headgroup region starting at ± 12 Å from the membrane center due to strong surface interactions. At the same time, incorporation of DHA into the membrane produced a reduction in electron density in the membrane hydrocarbon core centered \pm 7–9 Å from the membrane center. The membrane-disordering effects of DHA were consistent with experimental data providing measurements of decreased ARCT and promotion of cholesterol domains as compared with EPA or vehicle treatments. These differences in membrane structure and lipid dynamics are also consistent with experimental data demonstrating increased antioxidant activity for EPA compared with DHA and other related fatty acids in small dense lipoprotein particles. The effects of EPA on lipid structure and dynamics may explain the observed experimental differences between EPA and DHA under both normal and disease-like conditions of oxidative stress.

Chemical composition and antioxidant and anticholine esterase potentials of essential oil of *Monodora myristica* (Africa nut) seeds

Lateef A. Sulaimon¹, Rahmat A. Adisa³, Efere M. Obuotor², Bello A. Ibrahim¹, Modinat O. Lawal¹

¹Crescent University Abeokuta, Ogun State, Nigeria; ²Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria; ³University of Lagos, Lagos State, Nigeria

Essential oils have been recognized as some of the most promising compounds in the development of novel products, particularly in the pharmaceutical, agricultural, food, and perfumery industries. The current research aimed at characterization of the chemical composition and antioxidant and anticholine esterase activities of the essential oil from Monodora myristica (Africa nut). Essential oil extraction was carried out by use of a steam distillation method in a modified Clevenger-type apparatus to obtain volatile oil. The chemical composition of the essential oil from seeds of *M. myristica* was determined using gas chromatography coupled with mass spectrometry (GC-MS), and its potentials as antioxidant and anticholine esterase were evaluated. The oil yield was 0.6% (w/w) in M. myristica. The GC-MS analyses identified a total of 58 compounds, corresponding to 100% of the total oil in *M.*|*myristica*. The essential oil was rich in monoterpenes and sesquiterpenes and their analogues, namely oxygenated monoterpenes and sesquiterpenes. The oil additionally contained diterpenes and non-terpenoid aliphatic and aromatic hydrocarbons. A significant antioxidant (IC₅₀ value of 2,2-diphenyl-1-picrylhydrazyl = 4.63 ± 0.35 mg/ml) and anticholine esterase activity ($IC_{50} = 1.21 \pm 0.02 \text{ mg/ml}$) was obtained for the essential oil of *M. myristica*. The study established the chemical composition and antioxidant and anticholine esterase activity of the essential oil of the plant seeds. The moderate antioxidant and anticholine esterase potential of the essential oil from M. myristica is an indication of possible application in related in vivo studies for future therapeutic applications. The major compounds, monoterpenes and sesquiterpenes, could be used as a biomarker for the chemotaxonomical characterization of the species.

Why do leptin levels fall with fasting?

Alexandre Caron¹, Heather M. Dungan Lemko², Carlos M. Castorena¹, Teppei Fujikawa³, Syann Lee¹, Caleb C. Lord¹, Newaz Ahmed¹, Charlotte E. Lee¹, William L. Holland⁴, Chen Liu¹, Joel K. Elmquist¹

¹Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX; ²Howard Community College, Baltimore, MD; ³Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX; ⁴Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX

Leptin is critical for energy balance, glucose homeostasis, and for metabolic and neuroendocrine adaptations to starvation. A prevalent model predicts that leptin's actions are mediated through pro-opiomelanocortin (POMC) neurons that express leptin receptors (LEPRs). However, this model relies on studies using prenatal genetic manipulations, which may be subject to developmental compensation. Here, we tested the direct contribution of POMC neurons expressing LEPRs in regulating leptin secretion during fasting. We utilized a spatiotemporally controlled Lepr expression mouse model to delete LEPRs specifically in POMC neurons in adult mice. We report a dissociation between leptin's effects on glucose homeostasis *versus* energy balance in POMC neurons. We show that these neurons are dispensable for regulating food intake but are required for coordinating hepatic glucose production and for fasting-induced falls in leptin levels, independent of altered fat mass. We also identify a role for the G_{i/o} protein-coupled receptors in regulating leptin production. Collectively, our findings highlight a previously unrecognized role of POMC neurons in regulating leptin levels.

Identification of lipid biomarkers of inflammation and metabolic disturbances in Gulf War illness

James E. Evans^{1,2}, Utsav Joshi^{1,2,3}, Ross Joseph¹, Shara Oberlin¹, Heather Langlois¹, Andrew P. Keegan¹, Tanja Emmerich^{1,2}, Nancy Klimas^{4,5}, Kimblerly Sullivan⁶, Fiona Crawford^{1,2,3}, Michael Mullan^{1,2,3}, Laila Abdullah^{1,2,3}

¹Roskamp Institute, Sarasota, FL; ²James A. Haley Veterans' Hospital, Tampa, FL; ³Open University, Milton Keynes, United Kingdom; ⁴NOVA Southeastern University, Ft. Lauderdale, FL; ⁵Miami Veterans Affairs Medical Center, Miami, FL; ⁶Boston University School of Public Health, Boston, MA

Approximately 30% of the veterans of the 1991 Gulf War (GW) suffer from a disorder called Gulf War illness (GWI), characterized by symptoms that include fatigue, headaches, cognitive dysfunction, musculoskeletal pain, and gastrointestinal problems. The etiology of GWI is believed to involve exposure to a variety of neurotoxicants, such as pesticides and anti-nerve agents. Many symptoms of GWI resemble those of subjects with chronic fatigue syndrome (CFS), despite the differences in etiological origins. The main objective of this study was to identify specific and sensitive lipid biomarkers for GWI in plasma that can help distinguish veterans with GWI from subjects with CFS. We performed LC-MS lipidomic analysis on plasma from affected and control GW veterans and civilian controls and subjects with CFS who were matched for general demographics. Lipidomics was performed on Folch lipid extracts by nano-scale, reverse-phase liquid chromatography with a 45-min solvent gradient and interfaced to a high-resolution, high-mass-accuracy LTQ-Orbitrap mass spectrometer, where both positive and negative ion full-scan spectra were acquired at 30,000 mass resolution. Peaks for individual lipid molecular species were identified and quantified relative to classspecific internal standards using TraceFinder software (Thermo Scientific). This platform is routinely used to identify and quantify plasma lipids from more than 18 lipid classes, including 300–400 individual molecular species. The findings from these studies supplement our previously reported studies on phospholipid profiles in GWI veterans. In the current study, we have identified several differences between control and GWI veterans and those with CFS for several major classes of lipids, which include triglycerides, cholesterol esters, monoglycerides, diglycerides, cholesterol, ceramides and hexosylceramides, and sphingomyelins. We conclude that lipidomics technology is a powerful tool for identifying novel blood-based biomarkers of complex and chronic multisymptom illnesses, which are difficult to diagnose and treat.

The hormone fibroblast growth factor 21 (FGF21) stimulates drinking in response to ketogenic diet and alcohol

32

Parkyong Song¹, Christoph Zechner^{1,2,3}, Genaro Hernandez¹, José Cánovas⁴, Yang Xie⁵, Varun Sondhi^{1,2}, Martin Wagner⁶, Vanessa Stadlbauer⁶, Angela Horvath^{7,8}, Bettina Leber^{7,8}, Ming Chang Hu^{2,3}, Orson W. Moe^{2,3,9}, David J. Mangelsdorf^{1,10}, Steven A. Kliewer^{1,11}

¹Department of Pharmacology, ²Department of Internal Medicine, ³Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, ⁵Department of Clinical Sciences, ⁹Department of Physiology, ¹¹Department of Molecular Biology, and ¹⁰Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX; ⁴Departments of Biochemistry and Molecular Biophysics and Neuroscience, Columbia University, New York, NY; ⁶Department of Gastroenterology and Hepatology and ⁷Department of Transplantation Surgery, Medical University of Graz, Graz, Austria; ⁸Center for Biomarker Research in Medicine (CBmed), Graz, Austria

Alcohol and high-fat, low-carbohydrate ketogenic diets can cause osmotic stress and increased water consumption. Here, we show that the hormone FGF21 is required for this drinking response in mice. Circulating levels of FGF21 are increased by alcohol consumption in humans, and by both alcohol and ketogenic diets in mice. Concordantly, mice lacking FGF21 fail to increase water intake in response to either alcohol or a ketogenic diet. FGF21's dipsogenic effect is partially blunted by either selectively disrupting β -Klotho expression in Sim1⁺ neurons, which are highly enriched in the PVN, or by systemic administration of β -blockers. Given that FGF21 is also known to suppress alcohol intake in favor of pure water, this work identifies FGF21 as a fundamental neurotropic hormone that governs water balance in response to dehydrating dietary stresses.

Human thermogenic adipose tissue development and metabolic disease

Silvia Corvera¹, So Yun Min¹, Raziel Rojas-Rodriguez¹, Tiffany DeSouza¹, Khanh-van Tran¹

¹University of Massachusetts Medical School, Worcester, MA

Adipose tissue plays a central role in whole-body energy homeostasis. It can store and release energy, communicate energy status to other tissues, and regulate core body temperature. These functions are carried out by specific subtypes of adipocytes localized preferentially in distinct anatomical depots. The developmental mechanisms that give rise to different adipocyte types in different anatomical localizations are unknown but are of great interest, as variation in these processes is associated with risk of obesity and metabolic diseases. We and others have previously found that adipocyte progenitor cells are tightly associated with the adipose tissue vasculature and proliferate in vitro under pro-angiogenic culture conditions in which the vasculature of adipose tissue expands. We used this approach to generate human adipocyte progenitors from three distinct anatomical sites: subcutaneous neck (NeckSQ), pericarotid (Carotid), and subcutaneous abdominal tissue (AbdSQ). We differentiated adipocytes from these progenitors and assessed their responsiveness to thermogenic stimulation. We then used whole expressed genome arrays and hierarchical clustering analyses to find genes varying significantly as a function of anatomical localization, adipogenic differentiation, and thermogenic responsiveness. A small set of genes was identified that varied significantly with both localization and thermogenic responsiveness. Genes in this set were associated previously with modulation of cAMP signaling. To validate this finding, we measured the expression of these genes in adipose tissue from individuals with obesity and with type 2 diabetes and found significant decreases, correlating with their known suppressed thermogenic capacity. In vitro, knockdown resulted in decreased induction of thermogenic genes. Together, these results identify genetic signatures in pre-adipocytes and differentiated adipocytes associated with the human thermogenic phenotype and suggest a model whereby large differences in the function of human adipocytes between different depots can be potentially achieved through expression of a few key genes that modulate their responsiveness to external stimuli.

c-Abl mediates tyrosine transcription factor EB phosphorylation and its cytoplasmic localization: Implications in the Niemann–Pick type C cholesterol lysosomal storage disease

34

Pablo S. Contreras^{1,2,3}, Pablo J. Tapia^{1,2,3}, Ivana Peluso⁴, Chiara Soldati⁴, Macarena Las Heras³, Andres D. Klein⁴, Diego L. Medina⁴, Andrea Ballabio⁴, Silvana Zanlungo³, Alejandra R. Alvarez^{1,2}

¹Laboratorio Señalización Celular, ²CARE-Chile-UC, and ³Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; ⁴Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy

The transcription factor EB (TFEB) is the master regulator of lysosomal biogenesis and function and the autophagy pathway. The activity and translocation to the nucleus of TFEB depends on its phosphorylation state. The inhibition of the pro-apoptotic tyrosine kinase c-Abl increases Lamp1 protein levels and autophagy flux. The aim of this work was to analyze whether c-Abl inhibition promotes TFEB nuclear translocation and, as a consequence, ameliorates cholesterol accumulation in the lysosomal storage disease Niemann-Pick type C (NPC). We modulated c-Abl using an siRNA and different c-Abl inhibitors and followed TFEB-GFP subcellular localization. Also, we evaluated the TFEB tyrosine phosphorylation status by immunoprecipitation and phospho-Tyr Western blotting in cells overexpressing c-Abl. In addition, we evaluated cholesterol accumulation by filipin staining in NPC1 human fibroblasts, NPC mice, and cells (NPC1 null fibroblasts and Hepa 1–6 and HT22 cells treated with the U18666A drug (U18)) treated with the c-Abl inhibitors. TFEB is phosphorylated by c-Abl in tyrosine. Also, c-Abl inhibition induces TFEB nuclear translocation. In addition, c-Abl inhibitors reduced cholesterol accumulation in NPC1 human fibroblasts and mice, but not in Hela TFEB-KO cells treated with U18, indicating a TFEB-dependent effect. Our data strongly suggest that TFEB tyrosine phosphorylation by c-Abl impacts TFEB nuclear translocation, suggesting a novel signaling pathway involving these two proteins. Probably, this signaling would modulate cholesterol homeostasis in NPC disease.

Functional dissection of the central glucoregulatory circuits

Shi-Bing Yang¹

¹Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

The hypothalamus is the major commander to control somatic activities and innate behaviors, such as hunger, thirst, and body temperature. For example, the hypothalamus receives peripheral information, such as nutrients (glucose, fatty acids, and amino acids) and hormones (leptin, ghrelin, and insulin) and modulates the energy metabolism of a variety of peripheral tissues, such as the liver and skeletal muscle, via the autonomic nervous system, by controlling insulin sensitivity as well as the hepatic gluconeogenesis. Earlier studies have found that acute infusion of glibenclamide, a KATP channel blocker, into the third ventricle abolishes hormonally and nutritionally induced suppression of hepatic gluconeogenesis. In addition to that, our data indicated that central infusion of glibenclamide paradoxically impaired glucose tolerance in aged mice. Our genetic labeling has further revealed that the neurons in the dorsomedial hypothalamus (DMH), ventromedial hypothalamus (VMH), and arcuate nucleus are involved in the central regulation of peripheral glucose homeostasis. Last, our results also showed that the pharmacoactivation of neurons in the DMH induced the glucose intolerance in mice fed with a high-fat diet. Our study has demonstrated that the central nervous system may become a promising therapeutic for treating metabolic disorders.

Macrophage-derived neurotrophic factor GDF15 mediates a novel neuroimmune interaction in adipose tissues

Joshua C. Chang¹, Steffen Durinck¹, Nadia Martinez-Martin¹, Mark Z. Chen¹, Zora Modrusan¹, Andrew S. Peterson¹, Shannon J. Turley¹, Junichiro Sonoda¹

¹Genentech Inc., South San Francisco, CA

In response to environmental and nutrient stress, the compositions of stromal vascular fraction in adipose tissues change to accommodate new homeostatic requirements. Proinflammatory type 1 immune cells accumulate in obese visceral adipose tissues (VAT) and promote insulin resistance. In contrast, type 2 immune cells, in particular alternatively activated M2 macrophages, are predominant in the lean VAT and important for tissue homeostasis. The role of M2 macrophages in the cold-induced browning of subcutaneous adipose tissue (SCAT) and thermogenesis has also been proposed, but the notion remains controversial. Using flow-cytometric and tissue-imaging analyses, we observed that coldinduced sympathoactivation in obese VAT triggers a depot-specific tissue remodeling that involves extracellular matrix formation, angiogenesis, an M1-to-M2 shift in macrophage composition, an increase in sympathetic nerve fiber innervation, and emergence of UCP1positive beige adipocytes (i.e. VAT browning). Unexpectedly, pharmacological depletion of M2 macrophages prevents VAT browning without affecting SCAT browning under cold challenge. Using RNAseg analysis of M2 macrophages isolated from VAT, we found that M2 macrophages increased the production of growth differentiation factor 15 (GDF15) in response to cold. GDF15 was recently identified as a factor that activates the receptor tyrosine kinase RET signaling via the coreceptor GDNF receptor- α -like (GFRAL), primarily found in the central nervous system. We found Gfral mRNA expression also in the periphery, in the tissue containing the sympathetic chain ganglia, consistent with the notion that GDF15 acts directly on peripheral nerve, acting as a neurotrophic factor. Administrations of recombinant GDF15 into obese and diabetic mice increased sympathetic fiber innervation and browning in the white adipose tissues while reducing body weight and ameliorating diabetes. These results propose a previously unrecognized neuro-immune circuit mediated by the cold-activated M2 macrophages and the neurotrophic factor GDF15.

A novel long-acting FGF21 analogue significantly improves liver steatosis and inflammation and halts progression of fibrosis in preclinical models of NASH

Emma Henriksson¹, Jenny Norlin¹, Elisabeth Galsgaard¹, Rikke K. Kirk¹, Günaj Rakipovski¹, Birgitte Andersen¹

¹Novo Nordisk A/S, Global Research, Denmark

Metabolic syndrome has been shown also to associate with non-alcoholic steatohepatitis (NASH), and there is an unmet medical need for treatment of this serious disease that can progress into cirrhosis and hepatocellular carcinoma. Fibroblast growth factor 21 (FGF21) is an important non-mitogenic regulator of energy and lipid metabolism. In this study, we aim to investigate a long-acting FGF21 analogue for its effect on hepatic steatosis, injury, inflammation, and fibrosis in two metabolic, diet-induced mouse models for NASH. In an intervention study, C57Bl6J mice were fed a high-fat, -fructose, and -cholesterol diet (FFC) for 34 weeks, followed by 8 weeks of subcutaneous treatment with a long-acting FGF21 analogue (0.2–0.05 mg/kg/day), aiming to induce a 10% weight reduction to compare the effect to a weight-matched control group. In a prevention study, the atherosclerotic prone LDLr knockout mice were fed a Western diet (high-fat, high-sucrose, and high-cholesterol) and treated subcutaneously for 17 weeks with the FGF21 analogue (0.1 and 0.3 mg/kg/day). Plasma and liver parameters were analyzed in both studies. In FFC-fed mice treated for 8 weeks, the FGF21 analogue significantly improved metabolic parameters, such as body weight reduction and a decrease in plasma cholesterol. Moreover, liver steatosis, liver inflammation, liver cholesterol, and liver injury as determined by alanine transaminase (ALT) were all significantly reduced. Vehicle-treated mice showed progression of fibrosis for the 8week period, whereas progression was inhibited by the FGF21 analogue. Similar findings were seen in the 17-week prevention study (*i.e.* a significant reduction in liver steatosis, plasma ALT, and triglyceride as well as a dose-dependent prevention of fibrosis). Interestingly, FGF21 was able to significantly lower plasma cholesterol despite the lack of LDLr. A novel long-acting FGF21 analogue was proven efficient as NASH therapy in two separate preclinical studies, with significant impact on liver steatosis, liver inflammation, and progression of fibrosis. Addressing the underlying metabolic disease may be an attractive therapeutic option to battle NASH, and future clinical studies are warranted to investigate the potential of FGF21 as a novel therapeutic option for NASH patients.

Impact of AGPAT2 deficiency on the mRNA levels of enzymes involved in the glycerolipid synthesis in specific structures of the mouse brain

Lila Gonzalez-Hodar¹, Silvana Zanlungo², Anil Agarwal³, Victor Cortes¹

38

¹Department of Nutrition and ²Department of Gastroenterology, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Santiago, Chile; ³Division of Nutrition and Metabolic Diseases, University of Texas Southwestern Medical Center, Dallas, TX

The gene expression and functional implications of the different enzymes involved in the glycerolipid synthesis in the central nervous system are poorly known. Germ line mutations in one of these enzymes, AGPAT2, cause congenital generalized lipodystrophy in humans and mice. It remains unknown whether AGPAT2 deficiency determines alterations in brain lipid homeostasis. The aims of this study were to determine 1) the mRNA levels of enzymes involved in glycerolipid synthesis in different structures of the normal mouse brain and 2) whether AGPAT2 deficiency results in changes in the expression level of these enzymes. Cerebral cortex, hypothalamus, hippocampus, and cerebellum were dissected from 9-14week-old wild-type (WT) and Agpat2^{-/-} mice. Total RNA was isolated, and mRNA abundance was measured by real-time PCR. In WT mice, GPAT1, AGPAT1, AGPAT2, AGPAT3, AGPAT4, LIPIN1, LIPIN2, DGAT1, DGAT2, and MGAT1 were present at the mRNA level in all brain structures. GPAT2, LIPIN3, and MGAT2 were not detected. GPAT1 was more abundant in the cerebellum and hypothalamus than in other structures. Of AGPAT enzymes, AGPAT1 was the most abundant in the cerebral cortex and hippocampus, whereas AGPAT4 was the most abundant in the hypothalamus and cerebellum. The mRNA abundance of all AGPAT isoforms as well as LIPIN1 and DGAT1 was higher in the cerebellum and hypothalamus than in other structures. The mRNA levels of LIPIN2 were higher in the hypothalamus, and the levels of DGAT2 were higher in the cerebral cortex and hypothalamus, in comparison with other structures. In the Agpat2^{-/-} mice, mRNA levels of GPAT1, AGPAT1, AGPAT3, AGPAT4, LIPIN2, and MGAT1 were lower in all studied structures, in comparison with WT mice. LIPIN1 mRNA levels were decreased exclusively in the hypothalamus and cerebellum. We conclude that enzymes involved in glycerolipid synthesis are differentially expressed across structures of the mouse brain, and AGPAT2 deficiency changes the expression pattern of these enzymes. The functional impact of these changes on brain glycerolipid homeostasis and its implication in whole-body metabolic regulation in Agpat $2^{-/-}$ mice remain to be studied.

Melanocortin regulation of histamine neuron activity

Natalie J. Michael¹, Carlos M. Castorena¹, Alexandre Caron¹, Syann Lee¹, Jeffrey M. Zigman¹, Kevin W. Williams¹, Joel K. Elmquist¹

¹Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX

The histaminergic neurons of the tuberomammillary nucleus (TMN) in the posterior hypothalamus provide the sole source of histamine to the brain. Histaminergic TMN neurons are well-recognized for their role in regulating arousal and wakefulness. These neurons also contribute to multiple other physiological functions, including the regulation of energy homeostasis. The TMN has reciprocal connections with numerous hypothalamic nuclei involved in regulating energy homeostasis, including the arcuate nucleus. Evidence suggests that melanocortin 4 receptors (MC4R) are expressed within the TMN, and α -melanocyte– stimulating hormone immunoreactive fibers make synaptic contacts with histaminergic neurons. However, the ability of the melanocortin system to regulate histaminergic neuron activity has never been explored. We performed whole-cell patch-clamp electrophysiology on TMN neurons from mice expressing tdTomato driven by Cre-recombinase in histidine decarboxylase (HDC)-positive cells, the enzyme responsible for catalyzing the decarboxylation of L-histidine to histamine. Intact brain slices containing the TMN were treated with melanotan II (melanocortin receptor agonist, 100 nm), and electrophysiological responses were recorded. Our data suggest that subsets of TMN HDC-positive neurons respond to melanotan II. Results from these studies will provide crucial information regarding the way in which signals reflective of metabolic status and arousal are integrated within the hypothalamus.

Oleoylethanolamide treatment reduces neurobehavioral deficits and the brain pathology in a mouse model of Gulf War illness

Utsav Joshi^{1,2,3}, James Evans^{1,2,3}, Ross Joseph^{1,3}, Tanja Emmerich^{1,3}, Nicole Saltiel^{1,3}, Carlyn Lungmas^{1,3}, Sarah Oberlin¹, Heather Langlois^{1,3}, Joseph Ojo^{1,2,3}, Daniel Paris^{1,2,3}, Michael Mullan¹, Chao Jin¹, Nancy Klimas^{4,5}, Kimberly Sullivan⁶, Fiona Crawford^{1,2,3}, Laila Abdullah^{1,2,3}

¹Roskamp Institute, Sarasota, FL; ²Open University, Milton Keynes, United Kingdom; ³James A. Haley Veterans' Hospital, Tampa, FL; ⁴NOVA Southeastern University, Ft. Lauderdale, FL; ⁵Miami Veterans Affairs Medical Center, Miami, FL; ⁶Boston University School of Public Health, Boston, MA

Ethanolamides are natural ligands of the nuclear receptor PPAR- α and are widely known for their role in the control of appetite and pain. Anti-inflammatory properties of ethanolamides are downstream of PPAR- α activation, resulting in the inhibition of NF- κ B. Considering the anti-inflammatory properties of ethanolamides, we used oleoylethanolamide (OEA) to treat neuroinflammation in a mouse model of chronic Gulf War illness (GWI), a multisymptom condition that affects nearly 30% of veterans from the 1990-1991 Gulf War (GW). The pathology of GWI is thought to involve chronic activation of microglia and astroglia in the brain, and clinical symptoms include fatigue, pain, and cognitive impairment. At present, there are no therapies that can help treat the underlying pathology of GWI. The goal of this study is to examine the therapeutic potential of OEA in targeting the central nervous systembased pathology of GWI in a well-established mouse model. Male 9-week-old C57BL6 mice were co-administered 0.7 mg/kg PB and 200 mg/kg PER in a single intraperitoneal injection in dimethyl sulfoxide (DMSO) daily for 10 days to generate the mouse model, with the control group receiving DMSO only. At 5 months post-exposure, OEA was administered at 10 mg/kg/day (based on a 5-g daily food intake) in mouse chow for up to 6 months. We examined learning at 1 month and spatial memory at 2 months after treatment with OEA. We also examined anxiety and fatigue at 5 and 6 months after treatment, respectively. Six months after OEA treatment, mice were euthanized for lipidomic, biochemical, and immunohistochemistry analyses. Our findings suggest that OEA treatment improves learning and memory and reduces fatigue behavior in this GWI mouse model. Activation of NF-kB induced by PB + PER in the brain of GWI mice was reduced by OEA treatment in vivo. We also observed accumulation of very long-chain fatty acid in the brains of GW agent-exposed mice. Oleoylethanolamide treatment reduced elevated astroglia and microglia activation in GW agent-exposed mice. Oleoylethanolamide was also able to reduce pro-inflammatory cytokine levels. Our studies indicate that OEA could be useful as a potential treatment for GWI, which needs further investigation.

Brain-derived neurotrophic factor in the ventromedial hypothalamus: The intersection of exercise and anxiety?

Kimberly H. Cox¹, Carlos M. Castorena¹, Alexandre Caron¹, Charlotte Lee¹, Syann Lee¹, Joel K. Elmquist¹

¹Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX

The ventromedial hypothalamus (VMH) is critical for responding to metabolic challenges, such as high-fat diet or exercise. Importantly, the VMH is the only site in the brain that has neurons expressing steroidogenic factor-1 (Sf-1), a transcription factor required for VMH development and energy homeostasis. Using a transgenic mouse model to postnatally ablate Sf-1-expressing neurons (and thus specifically target the VMH without altering its development), our laboratory has demonstrated that VMH Sf-1 neurons are required for obese mice to fully benefit from exercise training. Sf-1 neurons have also previously been implicated in the regulation of anxiety behavior in mice. However, the downstream effectors of Sf-1 signaling that promote these responses are unknown. Sf-1 and brain-derived neurotrophic factor (*Bdnf*) are co-expressed within the VMH, and their expression is altered by exercise training, suggesting that Bdnf signaling acts downstream of Sf-1 within VMH neurons. *Bdnf* in other brain regions has also been implicated in mediating anxiety behaviors. Thus, the purpose of this study was to examine the effects of *Bdnf* within the VMH on both the response to exercise and regulation of anxiety. To address this guestion, we generated mice lacking Bdnf specifically from the VMH (SF1-cre-BDNF-flox). Adult (8–12-week) males and females and Cre-negative controls were divided into two test groups, half following a moderate exercise protocol and the other half remaining sedentary controls. Mice were given an endurance test to measure their baseline physical fitness, followed by daily treadmill training (15 m/min) for 1 h/day, 5 days/week for 2 weeks. Body weights and body compositions (via NMR) were taken weekly, and 2 h after the last training bout, brain, adipose, and muscle tissues were removed and rapidly frozen to extract RNA and measure gene expression via quantitative RT-PCR. An additional cohort of sedentary mice underwent behavioral phenotyping (open field, elevated plus maze, and light/dark transition) in the University of Texas Southwestern Behavioral Core. Our data suggest that loss of Bdnf in the VMH prevents a reduction in body fat in response to exercise training in male mice and, in female mice, increases anxiety behaviors.

Cannabinoid 1 receptor in steroidogenic factor 1 neurons regulates glucose homeostasis but not body weight

Carlos M. Castorena¹, Teppei Fujikawa², Alexandre Caron¹, Newaz I. Ahmed¹, Amanda G. Arnold¹, Jiwon Lee¹, Claudia R. Vianna¹, William L. Holland³, Syann Lee¹, Chen Liu¹, Joel K. Elmquist¹

¹Internal Medicine, Division of Hypothalamic Research, ²Department of Cellular and Integrative Physiology, and ³Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX

Obesity and type 2 diabetes are associated with dysregulation of the endogenous cannabinoid system. Whereas cannabinoid 1 receptor (CB1R) inverse agonists reduce adiposity and improve glucose homeostasis, these drugs have deleterious psychiatric side effects. CB1R expression is widespread, and the specific sites mediating the beneficial and untoward effects of CB1R drugs remain unclear. Evidence suggests that the inverse agonists may act on key sites within the central nervous system to improve metabolism. Using our unique mouse models, we deleted or "re-expressed" CB1Rs within steroidogenic factor 1 (SF1) neurons of the ventromedial hypothalamus (VMH). Similar body weights were observed between mice lacking CB1R from SF1 neurons (CB1RSF1-KO) versus controls. As expected, CB1R-null mice had reduced body weights and were protected from high-fat diet-induced obesity. Selective re-expression of CB1R in SF1 neurons (CB1RSF1-RE) did not alter these reductions in body weight. CB1RSF1-KO had improved glucose tolerance compared with controls, whereas CB1RSF1-RE had impaired glucose tolerance despite having reduced body weight. Furthermore, treatment with CB1R inverse angonists improved glucose homeostasis in control and CB1RSF1-RE mice, but not in CB1RSF1-KO mice. Our results indicate that CB1Rs of the VMH are critical for regulating whole-body glucose homeostasis, independent of body weight.

APOE4-dependent deficits in brain lysophosphatidylcholinedocosahexaenoic acid and its transporter mfsd2a in Alzheimer's disease patients

Laila Abdullah¹, James E. Evans¹, Ben Shackleton², Charis Ringland¹, Utsav Joshi¹, Ross Joseph¹, Joseph Ojo¹, Michael Mullan¹, Fiona Crawford¹, Corbin Bachmeier¹

¹Roskamp Institute, Sarasota, FL; ²Icahn School of Medicine at Mount Sinai, New York, NY

The contribution of apolipoprotein E (APOE) E4 to Alzheimer's disease (AD) pathology is characterized by the presence of severe cerebral amyloid angiopathy (CAA), increased bloodbrain barrier breakdown, and reduced cerebral vascularization in E4 carriers. It has been proposed that the diminished capacity of the apoE4 protein to transport docosahexaenoic acid (DHA), an essential fatty acid that is required for the structural and functional maintenance and vascular integrity of the brain, also contributes to AD pathogenesis. Studies have shown that lysophosphatidylcholine (LPC) is a major carrier of DHA to the brain and is transported through major facilitator superfamily domain-containing 2A (mfsd2a) enriched at the brain endothelial cells. However, it remains to be determined whether there are any differences between healthy and AD brain for LPC-DHA and mfsd2a levels in relation to the E4 allele. We performed liquid chromatography/mass spectrometry-based lipid analysis of the cerebrovascular and parenchymal fractions from autopsied human brain tissue of pathologically confirmed AD cases and controls. We performed antibody-based examination of the mfsd2a protein in the cerebrovasculature from these subjects. These studies were also performed on brain homogenates from transgenic mice with human APOE and five AD mutations (EFAD). In the cerebrovascular and parenchymal fractions, LPC-DHA levels were lower in E4 carriers with AD compared with control E4 carriers. We observed an E4-dependent decrease in protein levels of mfsd2a in the brain cerebrovasculature. The mfsd2a expression was lower in E4 carriers compared with non-carriers. Stratification of LPC-DHA by CAA showed that its levels were reduced in E4-positive AD patients with severe CAA. In addition, brain levels of LPC-DHA and mfsd2a expression were lower in E4FAD mice compared with E3FAD mice. These findings demonstrate that brain LPC-DHA deficiencies in E4 carriers may be due to reduced mfsd2a expression and partly associated with severe CAA. Thus, targeting this transport mechanism may improve the bioavailability of DHA in the brains of E4 carriers who are at risk of developing AD.

Molecular interactions of ANGPTL8 with ANGPTL3 and ANGPTL4: Consequences for activity of lipoprotein lipase

Oleg Kovrov¹, Erika Larsson¹, Kristian Kølby Kristensen^{2,3}, Michael Ploug^{2,3}, Gunilla Olivecrona¹

¹Department of Medical Biosciences, Umea University, Umea, Sweden; ²Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; ³Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark

Lipoprotein lipase (LPL) is the key enzyme in energy metabolism that facilitates uptake of triglycerides from plasma lipoproteins for storage by white adipose tissue, for ATP production in active muscles, and for heat in brown adipose tissue. Such important processes need to be tightly regulated based on the overall requirements of the body. Angiopoietin-like (ANGPTL) proteins 3, 4, and 8 serve as metabolic switches for LPL activity; they inactivate LPL in tissues that do not require uptake of lipolysis products from triglycerides at a particular moment. ANGPTL3 and ANGPTL4 are independent regulators of LPL activity, whereas ANGPTL8, the most recently discovered family member, has been demonstrated to work together with ANGPTL3 for control of LPL activity. It was shown that both of these ANGPTL proteins need to originate from the same cell for ANGPTL8 to cause additional inhibition of LPL activity. In our in vitro studies, using bacterially expressed ANGPTL proteins, we have observed that ANGPTL8 interacts with both ANGPTL3 and ANGPTL4. This occurs only when the ANGPTL proteins are mixed under fully denaturing conditions and then allowed to refold together. Similar to previously published studies, ANGPTL8 was capable of inactivating LPL only when folded together with ANGPTL3. We observed that ANGPTL8 had effects on LPL activity even when present in much lower concentrations than those of ANGPTL3. In contrast, increased concentrations of ANGPTL8 refolded together with ANGPTL4 were found to cause rapid aggregation of the complex and loss of the ability of ANGPTL4 to inactivate LPL. Further studies indicated that all three members of the ANGPTL family act on LPL via the same mechanism, involving promotion of heat-induced monomerization of active dimeric LPL. This was prevented if LPL was bound to glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1, the endothelial LPL transport protein that is known to protect LPL from heat-induced inactivation. Overall, our data support the view that ANGPTL8 may function as an additional metabolic control switch, which directs triglycerides to tissues that need them the most by activating ANGPTL3 and possibly by inactivating ANGPTL4.

Phosphatidylcholine synthesis coordinates the metabolic response to dietary fat in the murine intestinal epithelium

John P. Kennelly^{1,2}, Jelske N. van der Veen^{1,3}, Randal C. Nelson¹, Kelly-Ann Leonard², Rick Havinga⁴, Jean Buteau², Folkert Kuipers⁴, René L. Jacobs^{1,2,3}

¹Group on the Molecular and Cell Biology of Lipids, ²Department of Agricultural, Food, and Nutritional Science, and ³Department of Biochemistry, University of Alberta, Edmonton, AB, Canada; ⁴Departments of Pediatrics and Laboratory Medicine, University of Groningen, The Netherlands

Phosphatidylcholine (PC) is an abundant component of biological membranes and lipoprotein particles. The enzyme CTP:phosphocholine cytidylyltransferase- α (CT α) regulates de novo PC synthesis in the intestine. To determine the role of PC synthesis in small-intestinal physiology, we deleted $CT\alpha$ in the intestinal epithelium of mice. We generated intestinespecific CT α knockout mice (iCT $\alpha^{-/-}$ mice) using inducible Cre-Lox recombination. Control and iCT $\alpha^{-/-}$ mice were fed a carbohydrate-based chow or a high-fat diet. Plasma lipid and hormone concentrations were assessed after fasting and refeeding. Intestinal fatty acid absorption was guantified after oral gavage of [3H]triolein and measurement of label in plasma over time as well as label distribution in sequential intestinal segments. Gene expression microarray analysis was conducted on intestinal epithelial cells. Bile composition was assessed after gallbladder cannulation. Loss of intestinal CT α reduced PC concentrations in the small intestine by ~30%. When fed a high-fat diet, iCT $\alpha^{-/-}$ mice showed impaired fatty acid absorption, reduced chylomicron lipidation, and enhanced postprandial secretion of GLP-1 and PYY. Transcriptional programs regulating fatty-acid metabolism were repressed in $iCT\alpha^{-/-}$ intestines, whereas those of inflammation were increased. Loss of intestinal CT α induced crypt hyperproliferation and goblet cell depletion. Biliary bile acid, cholesterol, and phospholipid secretion was stimulated in iCT $\alpha^{-/-}$ mice, indicative of accelerated enterohepatic cycling. We conclude that intestinal PC synthesis regulates dietary fat absorption, enteroendocrine hormone secretion, enterohepatic circulation of bile acids, and the intestinal immune response in mice.

12-Hydroxylated bile acids regulate food intake and gastric emptying through GPR119 in the intestine

Sei Higuchi¹, Tiara R. Ahmad¹, Enrico Bertaggia¹, Kristian K. Jensen², Liangsu Wang², Rebecca A. Haeusler¹

¹Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY; ²Merck Research Laboratory, Kenilworth, NJ

One important risk factor of obesity is considered to be excessive food intake. Feeding behavior is governed partly by lipid mediators in the gastrointestinal tract. Particularly, intestinal lipid plays an important role in regulation of satiation through gastric emptying. Bile acids (BAs) are synthesized from cholesterol in the liver and modulate intestinal lipid metabolism. Previously, we reported that a certain subset of BAs, the 12-hydroxylated BAs (12-OH BAs), are positively correlated with body mass index in humans. Furthermore, our recent studies show that deficiency of the essential enzyme to produce 12-OH BAs, Cyp8b1, reduces body weight and impairs lipid absorption in mice. We also find that Cyp8b1 deficiency reduces ab libitum food intake. From this evidence, we hypothesized that Cyp8b1 deficiency reduces gastric emptying and food intake by modulating lipid metabolism in the intestine. We found that Cyp8b1 deficiency decreased both solid-phase and liquid-phase gastric emptying, and dietary lipid was both necessary and sufficient for this effect. Antagonization or knockout of the 2-monoacylglycerol receptor GPR119 normalized the slow gastric emptying and reduced food intake of Cyp8b1-deficient mice. These data suggest that 12-OH BAs regulate gastric emptying and food intake by modulating dietary lipid absorption and GPR119 activation in the intestine. Suppression of Cyp8b1 may be a novel target to reduce gastric emptying and increase satiation for obesity and diabetes treatment.

Reactivation of myeloid cell TLR4 promotes LPS-induced acute inflammation and anorexia in mice

Lin Jia¹, Shuwen Qian², Claudia Vianna¹, Newaz Ahmed¹, Charlotte Lee¹, Syann Lee¹, Laurent Gautron¹, Joel Elmquist^{1,3}

¹Division of Hypothalamic Research and ³Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX; ²Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China

It has been demonstrated that the Toll-like receptor 4 (TLR4)-mediated signaling pathway plays a critical role in lipopolysaccharide (LPS)-induced acute infection and associated sickness behavior. Specifically, TLR4 is highly expressed in immune cells. Although accumulating studies have shown the requirement of TLR4-expressing myeloid cells in the production of inflammatory cytokines following LPS treatment, direct in vivo evidence of whether activation of myeloid cell TLR4 is sufficient to induce vigorous innate immune response and suppress food intake is still lacking. To answer this question, we generated a new mouse model that enabled us to specifically restore the endogenous TLR4 expression in myeloid cells on a TLR4-null background. We found that, in response to LPS treatment, mice with reactivated TLR4 expression in myeloid cells had dramatically elevated circulating Tnf α and IL-6 levels. In addition, restoration of myeloid cell TLR4 expression in mice promoted LPSinduced hypoglycemia, which was associated with elevated expression of macrophage Glut1. Furthermore, a low-dose LPS (100 ng/kg body weight) injection greatly suppressed food intake and reduced weight gain in myeloid cell TLR4-reactivated mice. In contrast, TLR4-null mice were resistant to the aforementioned LPS-induced alterations. These findings suggest that activation of myeloid cell TLR4 contributes to acute LPS-induced cytokine production, hypoglycemia, and inflammation-associated anorexia. Moreover, our unique mouse model will be a very useful tool to evaluate the sufficiency of the tissue-specific Tlr4 gene in disease development.

Role of *de novo* lipogenesis in white adipose tissue signaling to brown adipose tissue in regulating thermogenesis through neural circuitry

Adilson Guilherme¹, Felipe S. Henriques¹, David J. Pedersen¹, Alexander Bedard¹, Alexandra Lee¹, Elizabeth Henchey¹, Kamal Rahmouni², Irfan J. Lodhi³, Clay F. Semenkovich^{3,4}, Michael P. Czech¹

¹Program in Molecular Medicine, University of Massachusetts Medical School Worcester, MA; ²Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA; ³Division of Endocrinology, Metabolism, and Lipid Research and ⁴Department of Cell Biology and Physiology, Washington University School of Medicine, Washington University School of Medicine, St. Louis, MO

Subcutaneous adipose tissue (sWAT) plays an important role in energy homeostasis and is recognized as an important source of secreted factors that communicate with other organs. We recently reported that down-regulation of *de novo* fatty acid synthesis (DNL) via genetic deletion of adipocyte fatty acid synthase (FASN) in mice housed at mild-cold conditions (i.e. 22°C) expands sympathetic neurons in sWAT associated with adipose browning (Guilherme et al. (2017) Mol. Metab. 6, 781–796). Here we show that sWAT sensory neurons are activated by FASN KO and tested whether BAT thermogenesis is also regulated by DNL. We deleted FASN in all mature white and brown adipocytes (Ad-FASNKO) or only in brown adipocytes (UCP1-FASNKO) by generating mice in which the tamoxifen (Tx)-inducible adiponectin-ER-Cre or the UCP1-ER-Cre drivers were used to delete adipocyte FASN, respectively. As expected, deletion of FASN in mature Ad-FASNKO mice induced strong sWAT "browning" with high UCP-1 expression and improved glucose tolerance. Interestingly, when brown adipocytes in Ad-FASNKO mice were first "whitened" by housing mice at thermo-neutrality (30°C), Tx administration also induced "browning" of these whitened brown adipocytes. However, this effect was not cell-autonomous because Tx failed to have this effect in tissue culture. Tx also failed to have this effect in the UCP1-FASNKO mice. Thus, FASN KO in white adipocytes appears to cause adipocyte browning in WAT as well as BAT through a non-cell autonomous mechanism. We obtained evidence that neuronal signaling from WAT to WAT and WAT to BAT may be the underlying mechanism for these effects by finding increased tyrosine hydroxylase and neuropeptide Y content in WAT and BAT in Ad-FASNKO but not UCP1-FASNKO mice. Consistent with that possibility, Ad-FASNKO mice but not UCP1-FASNKO mice showed activated cAMP/PKA signaling in WAT and BAT, reflecting release of catecholamines from sympathetic neurons. Further experiments identified neurotrophic factors produced by adipocytes deleted for FASN that can enhance neuronal outgrowth. Thus, the DNL pathway in white adipocytes may control thermogenic programming in WAT as well as systemic glucose metabolism through regulation of neuronal signaling to the CNS that then enhances sympathetic outputs into both WAT and BAT depots.

Identifying transcriptional targets of steroidogenic factor-1 in the ventromedial hypothalamus

Steven Wyler¹, Kimberly Cox¹, Caleb Lord¹, Charlotte Lee¹, Rong Wan¹, Angie Bookout¹, Syann Lee¹, Chen Liu¹, Joel Elmquist¹

¹Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX

The increasing prevalence of obesity and adult-onset diabetes represents a major health crisis in the United States. These disorders result from a complex interaction of multiple genetic, environmental, and behavioral factors. Within the hypothalamus resides multiple nuclei required for the regulation of metabolic homeostasis. One nucleus termed the ventromedial hypothalamus (VMH) facilitates glucose homeostasis and metabolic adaptation to challenges such as high-fat diet and exercise. A majority of these neurons express the orphan nuclear receptor, steroidogenic factor (SF-1), which is required for both the development and metabolic function of this nucleus. Identification of genes regulated by SF-1 will facilitate our understanding of the function of VMH neurons. To identify direct transcriptional targets of SF-1, we generated a new mouse line where we tagged the endogenous SF-1 protein with a 2×Ty1 tag. PCR confirmed the correct insertion of the Ty1 epitope, and immunohistochemistry against Ty1 revealed restricted expression to the VMH in the adult brain. Importantly, using chromatin immunoprecipitation (ChIP), we found enrichment for SF-1 binding at promoters of putative direct targets, Cnr1 and Bdnf. Additionally, the Ty1-SF-1 mice have normal serum-luteinizing hormone, follicle-stimulating hormone, and corticosterone levels, which are all disrupted in SF-1 null mice. Collectively, these data suggest that the Ty1 tag does not drastically interfere with SF-1 binding to target DNA or affect its interaction with other proteins, and it will be suitable for future genome-wide ChIPbinding assays. Finally, to screen potential metabolic targets of SF-1, we developed a strategy to test orthologs of SF-1-enriched genes in Drosophila. UAS-RNAi lines were crossed to nsyb-Gal4 to generate neuroendocrine-specific knockdown of target genes. As an initial assessment of metabolic disruption, flies were subjected to a starvation assay. Through this screen, we identified several VMH-enriched genes with altered resistance to starvation. Combined use of Drosophila and mouse models will help uncover novel genes involved in the metabolic function of the VMH.

Secreted micropeptides in the regulation of metabolic homeostasis

Angie L. Bookout^{1,2}, Zhaoning Wang², Eric N. Olson², Joel K. Elmquist¹

¹Department of Internal Medicine, Division of Hypothalamic Research, and the ²Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX

Cardiometabolic disease continues to be a major health burden worldwide. Our goal is to uncover new pathways to understand how a novel class of proteins called micropeptides may work in the hypothalamus to regulate whole-body metabolism. Our prediction that one such micropeptide, which we call B03, is a novel neuropeptide and contributes to metabolic homeostasis could reveal unique opportunities to modulate these pathways in vivo and offers possibilities for a new generation of therapeutics for cardiometabolic disease. Mice with genetic deletion of B03 have elevated plasma lipids and reduced respiratory exchange rates, leading to our hypothesis that B03 has a role in metabolic homeostasis by communicating nutritional status between neurons. This project will determine whether the micropeptide B03 is required to maintain whole-body energy balance through actions within the brain. First we will further characterize the metabolic outcomes of genetic deletion of B03 in the whole animal. We will subject B03 knockout animals to metabolic stress paradigms, including diet-induced obesity as well as severe hypoglycemia. These animals will then undergo a series of assessments using state-of-the-art techniques, including metabolic cages to measure energy expenditure, neuroendocrine assays, and gene expression measurements in liver and adipose. We will next determine the exact cellular identity of neurons expressing B03 using histochemical techniques. Finally, we will delete or re-express B03 only in neurons using a combination of cre- and flp-recombinase tools and assess the animals as stated above to determine the requirement of the brain in mediating the effects of B03 on metabolic homeostasis. Taken together, these studies will test the hypothesis that B03 is a novel neuropeptide that contributes to metabolic homeostasis by acting within the brain in response to nutritional challenge.

Functional analyses of DGAT enzymes in adipose tissue

Chandramohan Chitraju^{1,2}, Grisell Diaz-Ramirez², Jane J. Lee¹, Niklas Mejhert¹, Joel T. Haas², Carrie A. Grueter², Jason E. Imbriglio³, Shirly Pinto³, Suneil K. Koliwad², Robert V. Farese, Jr.^{1,4,5}, Tobias C. Walther^{1,4,5,6}

¹Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA; ⁴Broad Institute of Harvard and MIT, Cambridge, MA; ⁶Howard Hughes Medical Institute, Boston, MA; ²Gladstone Institute of Cardiovascular Disease, San Francisco, CA; ³Merck & Co., Inc., Kenilworth, NJ; ⁵Contributed equally

Triglyceride (TG) storage in adipose tissue provides the major reservoir for metabolic energy in mammals. TG synthesis in adipose tissue is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 or DGAT2. Both DGAT enzymes catalyze the same reaction, utilizing diacylglycerol and fatty acyl-CoAs as substrates, but are evolutionarily unrelated. The functional roles of the two enzymes in adipose tissue have remained unclear. To address this, we generated mice that lack either or both enzymes in adipocytes. We find that DGAT1 is up-regulated during lipolysis in adipose tissue, where it mediates fatty acid reesterification and protects adipocytes from lipid-induced endoplasmic reticulum stress. In contrast, DGAT2 is up-regulated with feeding. Although global knockout of DGAT2 is perinatal lethal, mice lacking DGAT2 in adipocytes are surprisingly healthy, with nearly normal levels of adipose fat. The adipocyte-specific deletions show that DGAT1 and DGAT2 have partial redundancy in adipocyte TG storage, although DGAT1 contributes more to dietinduced obesity. However, deletion of both DGAT enzymes in adipose tissue results in mice with lipodystrophy with complete loss of white adipose tissue and intrascapular brown adipose tissue. Our studies reveal that DGAT1 and DGAT2 account for all TG synthesis in adipose tissue and that the two enzymes can partially compensate for each other but have specific functional roles.

52

Weight loss induced by FGF21 is associated with up-regulation of neurotensin and corticotropin-releasing hormone in dorsomedial hypothalamus and increased hepatic bile acid and glucose secretion in liver of DIO mice

Marina Kjaergaard^{1,2}, Helle Keinicke¹, Gao Sun¹, Linu M. John¹, Anna Secher¹, Birgitte S. Wulff¹, Birgitte Andersen¹, Kirsten Raun¹

¹Global Research, Novo Nordisk A/S, Maaloev, Denmark; ²Clinical Medicine, Copenhagen University Hospital, University of Copenhagen, Denmark

Fibroblast growth factor 21 (FGF21) has multiple metabolic effects and targets several organs, such as brain, liver, adipose tissue, etc. The main effects induced by FGF21 in rodents are weight loss induced by increased energy expenditure (EE) and improved lipid and glucose metabolism. To understand the regulatory mechanisms behind FGF21-induced weight loss, the hypothalamic gene expression profile was characterized in arcuate nucleus and dorsomedial hypothalamus (DMH) of the brain and in the liver. Diet-induced obese C57BL/6J male mice were treated with FGF21 (0.6 mg/kg/day, twice per day) and by diet intervention, by switching from high-fat diet to chow for 18 days. As expected, FGF21 lowered body weight independent of food intake and therefore likely caused by increased EE. Within DMH, FGF21 up-regulated neurotensin (NT) and corticotropin-releasing hormone (CRH) mRNA compared with vehicle and CR. The increase in CRH may be driven by the increase in NT (Rowe et al. (1995), Mazzocchi et al. (1997), and Crooke et al. (2009)), consequently inducing increase in EE. Within the liver, the gene expression profile suggests that FGF21 increased hepatic uptake of fatty acids and lipoproteins from blood, channeled TGs toward production of cholesterol and bile acid for secretion, reduced lipogenesis, and increased hepatic glucose output. The weight loss and improved lipid and glucose metabolism may also be induced by a reduction in inflammatory and oxidative stress response observed in both brain and liver. Interestingly, the hepatic expression of short-form leptin receptor (Ob-Ra) was highly induced, and the mechanism of this up-regulation is not presently known. In summary, the weight loss induced by FGF21 was probably caused by increased EE. The increased mRNA levels of NT and CRH in the DMH and the hepatic bile acid and glucose secretion from the liver could potentially play a role in increasing energy expenditure.

Examining high-density lipoproteins in cerebral spinal fluid

Tamar Gubeladze¹, James Feng¹, Kate T. Creasy¹, Lisa Conboy¹, Megan Richie¹, John P. Kane¹

¹University of California, San Francisco, CA

Cholesterol is vital to normal brain development and proper physiological function, learning, and memory. Dysregulation in cholesterol metabolism can lead to diseases of the central nervous system (CNS), including Alzheimer's disease. Cholesterol in the CNS is primarily transported by high-density lipoproteins (HDL) that characteristically contain apolipoproteins A1 and E. We have previously shown that there are over 20 unique species of HDL in human plasma, many of which have distinct biological functions in addition to cholesterol transport. We recently reported that HDL carries a number of cytokines and is possibly directly involved in mediating inflammatory responses. Differential HDL-cytokine profiles correlate with cardiovascular disease risks, and therefore we aim to examine whether CNS-HDL profiles have similar relationships. We collected surplus cerebral spinal fluid (CSF) samples from patients at the University of California San Francisco Lumbar Puncture Clinic. After samples were utilized for diagnostic and clinical purposes, surplus CSF samples without red blood cell contamination were transferred for use in this study. CSF samples representing conditions ranging from benign (headache, tinnitus), to inflammatory, neoplastic, and other organic CNS disorders (Parkinson's, dementia) were examined. Samples were separated by twodimensional gel electrophoresis and analyzed for expression of apolipoproteins A1 and E. We isolated HDL from the samples and guantified the expression of 65 cytokines in the HDL fraction and whole CSF to determine inflammatory signaling relationships that become altered in neurological disorders. Finally, we measured the amount of preß-HDL, a known biomarker of cardiovascular disease, in the CSF samples to test whether there is a common underlying mechanism of impaired HDL metabolism in neurological and cardiovascular diseases. Our project characterizes the HDL speciation of CSF in different neurological conditions, illustrating differences in HDL metabolism in CNS disorders. Our future studies will aim to clarify the properties of HDL that are dysregulated in more severe neurological conditions to elucidate disease mechanisms and points of early detection and interventions for these conditions.

Mechanisms coordinating de novo lipogenesis with triglyceride synthesis

Aditi Jatkar^{1,2,3}, Niklas Mejhert^{1,2,3}, Chandramohan Chitraju^{1,2}, Tobias C. Walther^{1,2,4,5}, Robert V. Farese, Jr.^{1,2,4}

¹Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA; ²Department of Cell Biology, Harvard Medical School, Boston, MA; ³Broad Institute of Harvard and MIT, Cambridge, MA; ⁴Howard Hughes Medical Institute, Boston, MA; ³Contributed equally

Fatty acids (FAs) are used by cells for energy and as building blocks for other lipids and membranes. When in excess, FAs are stored as triglycerides (TGs) in lipid droplets. How the production of FAs by *de novo* lipogenesis (DNL) is coordinated with storage depots is largely unknown. The master regulator of DNL is SREBP-1c, a transcription factor that up-regulates the expression of more than 30 lipid synthesis genes. We now show that cellular TG storage capacity is coordinated with SREBP-1c activation. Our previous studies in mice showed that overexpression of the TG synthesis enzyme DGAT2 (acyl-CoA:diacylglycerol acyltransferase 2) increases expression of SREBP-1c and its target genes, and we now show that genetic loss of DGAT2 decreases this response. In cells, pharmacological inhibition of DGAT2 retains both SREBP-1 and SREBP-2 in the endoplasmic reticulum, thus preventing their activation. Other COPII cargo proteins, such as cystic fibrosis transmembrane receptor and ATF-6, trafficked normally through the secretory pathway, indicating that the processing block was specific for SREBPs. Our studies indicate that the block in SREBP trafficking is probably caused by a specific but yet unidentified mechanism involving SCAP or Insig-1, the interacting partners of SREBP. Lipidomics experiments show that DGAT2 inhibition results in the accumulation of several sphingolipid species, suggesting that these may be proximal mediators of the regulatory step. In summary, we have uncovered a new connection between TG synthesis and DNL and hypothesize the existence of a feedback mechanism that coordinates FA storage with FA synthesis.

IDOL regulates systemic energy balance through control of central nervous system very low-density lipoprotein receptor expression

Stephen D. Lee¹, Christina Priest¹, Jie Gao¹, Jason Kim¹, Prashant Rajbhandari¹, Peter Tontonoz¹, Cynthia Hong¹

¹UCLA, Los Angeles, CA

Liver X receptors limit the cellular uptake of lipids through transcription of the E3 ubiquitin ligase "inducible degrader of the LDL receptor" (IDOL), which targets lipoprotein receptors for lysosomal degradation. We previously demonstrated that the LXR-IDOL pathway exerts species-specific effects on levels of lipoproteins through control of low-density lipoprotein receptor (LDLR) protein levels. However, the broader contributions of IDOL to systemic metabolism are unknown. Here we show that loss of IDOL in mice is protective against the development of diet-induced obesity and metabolic dysfunction. Unexpectedly, analysis of a series of tissue-specific knockout mice reveals that IDOL affects energy balance, not through its actions in metabolic tissues, but though its actions in the central nervous system (CNS). Furthermore, we identify very low-density lipoprotein receptor (VLDLR) rather than LDLR as the key mediator of IDOL effects on systemic metabolism. These studies identify a role for the CNS IDOL-VLDLR pathway in energy balance and susceptibility to diet-induced obesity.

Melanocortin-4 receptor expression in the ventromedial hypothalamus is dynamically regulated by estradiol and contributes to metabolic homeostasis specifically in females

William C. Krause¹, Holly A. Ingraham¹

¹Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA

Estrogen receptor α (ESR1)-expressing neurons in the ventrolateral region of the ventromedial hypothalamus (VMHvl) promote energy expenditure and maintain metabolic homeostasis in females. However, the connection between ESR1 activity in the VMHvl and the neural circuits that regulate metabolism is not well defined. As part of an effort to identify ESR1 effectors in the hypothalamus, we found that the melanocortin-4 receptor (Mc4r) is transcriptionally up-regulated by endogenous (protesrus) or exogenous increase in circulating estradiol. Mc4r mRNA induction localizes to the VMHvl. Similarly, two independent reporters confirm enrichment of this metabolic sensor in the ESR1-expressing neurons in the female VMHvI. Given that MC4R signaling promotes energy expenditure, we hypothesized that its regulation by ESR1 provides an interface between the VMHvI and broader circuitry regulating energy homeostasis. To confirm a physiological role for the VMHvIMC4R neurons, we took advantage of a re-activatable Mc4r allele (loxTB Mc4r) in which a transcriptionblocking sequence prevents gene expression. As expected, by 8 weeks of age, both male and female loxTB Mc4r mice are significantly heavier than control littermates. Sf1-Cre removes the inhibitory loxTB element and restores VMHvl Mc4r mRNA expression. Remarkably, body weights of female loxTB Mc4r;Sf1-Cre mice are significantly decreased compared with loxTB Mc4r littermates. In contrast, consistent with ESR1-mediated regulation of Mc4r expression, there is no body weight change in male loxTB *Mc4r;Sf1-Cre* mice. Preliminary metabolic analysis indicates that energy expenditure and physical activity levels are increased in the loxTB Mc4r;Sf1-cre females compared with loxTB Mc4r mice. Ongoing efforts in the laboratory are under way to characterize changes in VMHvl neuron physiology in response to melanocortinergic input and the sensitization of this response by ESR1-mediated regulation of Mc4r. Collectively, our data indicate that the VMHvl neurons integrate steroid hormone and central metabolic signals to set appropriate energy expenditure levels. In addition, the intersection of ESR1 and MC4R signaling may contribute to the stronger obesity phenotype associated with loss/mutation of MC4R in female rodents and humans.

Nitro-oleic acid distribution in lipoprotein triglycerides

Marco Fazzari^{1,2}, Sonia R. Salvatore², Dario A. Vitturi², Steven R. Woodcock², Bruce A. Freeman², Francisco J. Schopfer²

¹Fondazione Ri.MED, Palermo, Italy; ²Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA

Nitro-fatty acids (NO₂-FA) are endogenous electrophilic signaling mediators that act by forming reversible Michael adducts with glutathione and cysteine residues in target proteins. In this regard, NO₂-FA modulate cellular homeostasis and protective responses through Nrf-2 and heat shock factor activation and down-regulate inflammatory responses by inhibition of NF- κ B and soluble epoxide hydrolase. Despite the recent advances in NO₂-FA pharmacology and highly promising preclinical and clinical data, our understanding of NO₂-FA absorption, distribution, and storage is greatly diminished by technical challenges. These are characterized by the complexity displayed of NO₂-FA reversible thiol reactivity, the NO₂-FA incorporation into a wide variety of complex lipids, and their instability under enzymatic and non-enzymatic hydrolysis conditions. Herein, we investigated the mechanism and kinetics of absorption, metabolism, and distribution of the prototypical 10-nitro-oleic acid (NO₂-OA) using a model of rat lymph fistula and dog oral gavage. We established esterification as a main yet unexplored mechanism of NO₂-FA distribution through HPLC-high-resolution MS/MS analysis of triacylglycerides. NO₂-OA and its main inactive metabolite nitro-stearic acid (NO₂-SA) were found esterified in rat lymph fluid and dog plasma after oral supplementation. Moreover, guantitative HPLC-MS/MS analysis of free and esterified fractions confirmed a preferential time-dependent NO₂-OA and NO₂-SA incorporation into lymphatic chylomicrons. In this regard, esterified NO₂-FA levels in lymph were \sim 22–50-fold higher than the free levels, whereas no difference was found in rat portal plasma. Of note, NO₂-OA was mainly found esterified in dog plasma after single oral dosing, whereas NO₂-SA metabolite levels were higher in the non-esterified fraction. Furthermore, after 14 days of oral dosing, a 5-fold decrease in net NO₂-OA esterification was found compared with day 1. Finally, the new positional (10-nitro-octadec-8-enoic acid) and geometrical (Z-10-nitro-octadec-9-enoic acid) isomers of NO₂-OA were detected and described. In summary, we demonstrated that the main distribution mechanism of NO₂-OA involves esterification, which inhibits electrophilic interactions with blood components and further protects the delivery of these electrophilic signaling molecules to target tissues by bypassing hepatic first-pass metabolism.

Cellular and synaptic reorganization after exercise training

Zhenyan He¹, Lihn Liu¹, Sadia Afrin¹, Kevin W. Williams¹

¹Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX

Hypothalamic pro-opiomelanocortin (POMC) and neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons are critical nodes of a circuit within the brain that sense key metabolic cues as well as regulate feeding behavior, energy expenditure, and glucose metabolism. Importantly, intrinsic cellular properties of these neurons are highly sensitive to metabolic state. This includes a rapid reorganization of synaptic inputs and electrophysiological properties to facilitate adaptations to altered energy balance. Although the cellular properties of these neurons have been investigated in the context of obesity, much less is known about the effects of exercise training. We performed whole-cell patch-clamp electrophysiology on identified POMC and NPY/AgRP neurons after exercise. Exercise resulted in a depolarization and increase in firing rate of arcuate POMC neurons. The increased excitability of POMC neurons was concomitant with increased excitatory input to these neurons. In agreement with recent work suggesting that leptin plays an important role in the synaptic (re)organization of POMC neurons, we found that POMC neurons that express leptin receptors appeared more sensitive to exercise-induced changes in biophysical properties. Opposite to the cellular effects observed in POMC neurons, NPY neurons were inhibited following exercise. Together, these data support a rapid reorganization of synaptic inputs and biophysical properties in response to exercise, which may facilitate adaptations to altered energy balance and glucose metabolism.

69

Author Index

Name	Abstract/Poster Board Assignment	Name	Abstract/Poster Board Assignment
Abdullah, L.	31	Castorena, C. M.	42
Abdullah, L.	40	Castorena, C. M.	39
Abdullah, L.	43	Castorena, C. M.	30
Adisa, R. A.	29	Chandrakala, A. N.	24
Afrin, S.	58	Chang, J.	36
Agarwal, A.	38	Chen, M.	36
Ahmad, T. R.	46	Chen, P.	26
Ahmed, N.	47	Chen, Y.	26
Ahmed, N. I.	42	Chenchar, A.	15
Ahmed, N.	30	Chitraju, C.	51
Albers, J. J.	22	Chitraju, C.	54
Alshudukhi, A. A.	18	Chorba, J. S.	5
Alvarez, A. R.	34	Chorba, J. S.	6
Andersen, B.	37	Chrast, R.	18
Andersen, B.	52	Coate, K. C.	27
Andersen, E. S.	15	Conboy, L.	53
Arnold, A. G.	42	Contreras, P. S.	34
Bachmeier, C.	43	Corbit, K.	17
Ballabio, A.	34	Cortes, V.	38
Bao, G.	19	Corvera, S.	33
Bedard, A.	48	Cox, K. H.	41
Bertaggia, E.	46	Cox, K.	49
Björkegren, J.	8	Crawford, F.	43
Bonomo, R.	2	Crawford, F.	40
Bookout, A.	49	Crawford, F.	31
Bookout, A. L.	50	Creasy, K. T.	53
Brown, J. M.	25	CZECH, M. P.	48
Burkhead, J.	20	Dalgaard, N. B.	15
Buteau, J.	45	Dallner, O. S.	16
Cacciottolo, T.	4	De Giorgi, M.	19
Cai, X.	11	DeSouza, T.	33
Cánovas, J.	32	Diaz-Ramirez4, G.	51
Cao, Y.	23	Dietri, M. O.	9
Caron, A.	30	Ding, X.	23
Caron, A.	39	Doerfler, A. M.	19
Caron, A.	42	Dong, B.	14
Caron, A.	41	Dungan Lemko, H. M.	30
Castorena, C. M.	41	Durinck, S.	36

Name	Abstract/Poster Board Assignment	Name	Abstract/Poster Board Assignment
Elmquist, J. K.	39	Han, Y.	12
Elmquist, J. K.	42	Han, Y.	10
Elmquist, J. K.	41	Hansen, N. L.	15
Elmquist, J. K.	30	Havinga, R.	45
Elmquist, J.	1	He, Y.	10
Elmquist, J. K.	50	He, Y.	9
Elmquist, J.	49	He, Y.	11
Elmquist, J.	47	He, Z.	58
Emmerich, T.	31	Henchey, E.	48
Emmerich, T.	40	Henriksson, E.	37
Evans, J.	40	Henriques, F. S.	48
Evans, J. E.	43	Hernandez, G.	27
Evans, J. E.	31	Hernandez, G.	32
Farese Jr., R. V.	54	Higuchi, S.	46
Farese, Jr, R. V.	51	Hoffmann, N.	15
Farias, M.	9	Holland, W. L.	30
Farias, M.	10	Holland, W. L.	42
Farias, M.	12	Hong, C.	55
Farooqi, S.	4	Horvath, A.	32
Fazzari, M.	57	Hsu, R.	19
Feng, J.	53	Hu, M.	32
Freeman, B. A.	57	Huang, D.	18
Friedman, J.	7	Hurley, A.	19
Fujikawa, T.	30	Hyseni, I.	11
Fujikawa, T.	42	Ibrahim, B. A.	29
Galsgaard, E.	37	Imbriglio, J. E.	51
Galvan, A. M.	5	Ingraham, H. A.	56
Galvan, A. M.	6	Jacob, R. F.	28
Gao, J.	55	Jacobs, R. L.	45
Gautron, L.	47	Jama, A.	18
Gavini, C.	1	Jarlhelt, I.	15
Gavini, C. K.	2	Jarrett, K. E.	19
Gillum, M. P.	15	Jatkar, A.	54
Gonzalez-Hodar, L.	38	Jensen, K. K.	46
Grevengoed, T.	15	Jensen, M.	15
Grueter, C. A.	51	Jia, L.	47
Gubeladze, T.	53	Jiang, H.	23
Guilherme, A.	48	Jimenez-Morales, D.	17
Haas, J. T.	51	Jin, C.	40
Haeusler, R. A.	46	John, L. M.	52
Han, Y.	9	Jorgensen, R.	25

Name	Abstract/Poster Board Assignment	Name	Abstract/Poster Board Assignment
Joseph, R.	31	Leber, B.	32
Joseph, R.	40	Lee, A.	48
Joseph, R.	43	Lee, A.	9
Joshi, U.	43	Lee, C. E.	30
Joshi, U.	40	Lee, C.	41
Joshi, U.	31	Lee, C.	49
Kane, J. P.	53	Lee, C.	47
Kaplan, J. H.	20	Lee, C.	19
Keegan, A. P.	31	Lee, J. J.	51
Keinicke, H.	52	Lee, J.	42
Kennelly, J. P.	45	Lee, S. D.	55
Kim, J.	55	Lee, S.	47
Kirk, R. K.	37	Lee, S.	49
Kjaergaard, M.	52	Lee, S.	42
Klaauw, A.	4	Lee, S.	41
Klein, A. D.	34	Lee, S.	39
Kliewer, S. A.	32	Lee, S.	30
Kliewer, S. A.	27	Lei, D.	13
Kliewer, S.	21	Leonard, K.	45
Klimas, N.	31	Li, A.	19
Klimas, N.	40	Li, J.	22
Knop, F. K.	15	Lin, J.	26
Kodirov, S.	9	Liu, C.	30
Koliwad, S. K.	51	Liu, C.	42
Koplev, S.	8	Liu, C.	49
Kovrov, O.	44	Liu, C.	20
Kraemer, F. B.	14	Liu, J.	14
Krause, W. C.	56	Liu, L.	58
Krauss, R. M.	13	Liu, T.	1
Kristensen, K.	44	Lodhi, I. J.	48
Krogan, N.	17	Lord, C.	49
Kuang, Y.	13	Lord, C. C.	30
Kuipers, F.	45	Lungmas, C.	40
Lagor, W. R.	19	Lusis, A. J.	8
Lan, T.	21	Lutsenko, S.	20
Langlois, H.	40	Mangelsdorf, D.	21
Langlois, H.	31	Mangelsdorf, D. J.	2
Larsson, E.	44	Mangelsdorf, D. J.	27
Las Heras, M.	34	Mangelsdorf, D. J.	32
Lawal, M. O.	29	Mansuy, V. A.	2
Le, T. D.	27	Mansuy-Aubert, V.	1

Name	Abstract/Poster Board Assignment	Name	Abstract/Poster Board Assignment
Martínez-Hernández, E.	3	Qian, S.	47
Martinez-Martin, N.	36	Rahmouni, K.	48
Mason, R. P.	28	Rajbhandari, P.	55
Matsen, M. E.	25	Rajbhandari, P.	8
Mattis, A.	17	Rakipovski, G.	37
Medina, D. L.	34	Ralle, M.	20
Mejhert, N.	51	Raun, K.	52
Mejhert, N.	54	Ren, G.	22
Meng, F.	9	Ren, G.	13
Meng, F.	10	Ren, H.	18
Michael, N. J.	39	Reue, K.	8
Min, S.	33	Riad, A.	24
Modrusan, Z.	36	Richie, M.	53
Moe, O. W.	32	Ringland, C.	43
Morton, G. J.	25	Rodriguez, S.	20
Mullan, M.	31	Roeder, R.	7
Mullan, M.	40	Rojas-Rodriguez, R.	33
Mullan, M.	43	Saltiel, N.	40
Nadra, K.	18	Salvatore, S. R.	57
Nelson, R. C.	45	Scarlett, J. M.	25
Nguyen, H. T.	25	Scheele, C.	15
Norlin, J.	37	Schopfer, F. J.	57
O'Malley, B.	4	Schwartz, M. W.	25
Oberlin, S.	40	Secher, A.	25
Oberlin, S.	31	Secher, A.	52
Obuotor, E. M.	29	Seldin, M. M.	8
Ojo, J.	40	Semenkovich, C. F.	48
Ojo, J.	43	Shackleton, B.	43
Olivecrona, G.	44	Sherratt, S. C.	28
Olson, E. N.	50	Shokat, K. M.	5
Paris, D.	40	Shokat, K. M.	6
Parthasarathy, S.	24	Singh, A. B.	14
Pedersen, D. J.	48	Søberg, S.	15
Peluso, I.	34	Soldati, C.	34
Perissinotti, P. P.	3	Sondhi, V.	32
Peterson, A.	36	Song, P.	32
Piedras-Rentería, E. S.	3	Sonoda, J.	36
Pinto, S.	51	Srisai, D.	9
Ploug, M.	44	Srisai, D.	10
Pownall, H. J.	19	Stadlbauer, V.	32
Priest, C.	55	Sulaimon, L. A.	29

Name	Abstract/Poster Board Assignment	Name	Abstract/Poster Board Assignment
Sullivan, K.	40	Wulff, B. S.	52
Sullivan, K.	31	Wyler, S.	49
Sun, G.	52	Xia, G.	12
Sun, S.	27	Xia, G.	10
Tapia, P. J.	34	Xia, G.	9
Thomas, D.	2	Xie, Y.	32
Thorne, C. A.	27	Xu, P.	11
Tontonoz, P.	8	Xu, Y.	11
Tontonoz, P.	55	Xu, Y.	9
Tóth, I.	9	Xu, Y.	10
Trammell, S.	15	Xu, Y.	4
Tran, K.	33	Yang, H.	20
Turley, S.	36	Yang, S.	35
Vale, K.	27	Yang, Y.	4
Van der Veen, J. N.	45	Yang, Y.	11
Vergnes, L.	8	Yu, Y.	13
Verran, E.	1	Zanlungo, S.	34
Vianna, C. R.	42	Zanlungo, S.	38
Vianna, C.	47	Zechner, C.	32
Vitturi, D. A.	57	Zeng, W.	23
Vuletic, S.	22	Zhai, X.	22
Wagner, M.	32	Zhai, X.	13
Walther, T. C.	54	Zhang, M.	13
Walther, T. C.	51	Zhang, M.	22
Wan, R.	49	Zhang, Y.	7
Wang, C.	11	Zhu, L.	4
Wang, H.	23	Zigman, J. M.	39
Wang, L.	46		
Wang, Z.	50		
Weiss, E. J.	17		
Williams, K. W.	39		
Williams, K. W.	58		
Wolfgang, M. J.	20		
Wong, G.	20		
Woodcock, S. R.	57		
Wu, Q.	9		
Wu, Q.	-		
Wu, Q.	10		

Deuel Board Members

CHAIR

JAY HORTON (2018)

Department of Internal Medicine, Molecular Genetics UT Southwestern Medical Center 5323 Harry Hines Blvd. Dallas, TX 75390

MEMBERS

ALAN ATTIE (2018)

Department of Biochemistry University of Wisconsin-Madison 433 Babcock Drive Madison, WI, 53706-1544 Tel: (608) 262-1372

DAN BLOOMFIELD (2018)

Merck & Co. 126 E. Lincoln Avenue PO BOX 2000 Rahway, NJ, 07065-0900 Tel: (732) 594-0800

KARIN BORNFELDT (2018)

Department of Pathology, Diabetes and Obesity University of Washington South Lake Union Campus Box 358055 815 Mercer Street Seattle, WA 98109 Tel:(206) 543-1681

ROSANNE CROOKE (2021)

Ionis Pharmaceuticals Antisense Drug Discovery 2855 Gazelle Court Carlsbad, CA 92010 Tel: (760) 603-2326

BRANDON DAVIES (2022)

Department of Biochemistry University of Iowa Iowa City, IA 52242 Tel: (319) 335-3225

JESPER GROMADA (2019)

Metabolism and Muscle Department Regeneron Pharmaceuticals 777 Old Saw Mill River Road Terrytown, NY 10591 Tel: (914) 847-7971

CYNTHIA HONG (2021)

Pfizer CVMET 610 Main Street Cambridge, MA 02139 (617) 674-6586

HOLLY INGRAHAM (2022)

UCSF Cellular and Molecular Pharmacology 1550 4th Street Rock Hall 284F San Francisco, CA 94598 Tel: (415) 517-3401

SEKAR KATHIRESAN (2018)

Massachusetts General Hospital Center for Human Genetic Research 185 Cambridge St Boston, MA 02114 Tel: (617) 643-7995

FREDRIC KRAEMER (2018)

Division of Endocrinology, S005 Stanford University Medical Center Stanford, CA 94305-5103 Tel: (650) 493 5000 x 63184

KATHRYN MOORE (2021)

New York University School of Medicine Medicine (Division of Cardiology) 522 First Avenue, Smilow 705 New York, NY10016 Tel: (212) 263-9259

KERRY-ANNE RYE (2021)

University of New South Wales School of Medical Sciences Lipid Research Group Level 4E, Wallace Wurth Building Sydney, Australia 2052

JEAN SCHAFFER (2019)

Washington University St. Louis School of Medicine Division of Biology and Biomedical Sciences Campus Box 8226 660 S. Euclid Ave. St. Louis, MO 63110-1093

ROSHNI SINGARAJA (2020)

Translational Laboratories in Genetic Medicine National University of Singapore Singapore

ALAN TALL (2020)

Department of Medicine Columbia University 630 West 168th St. New York, NY 10032 Tel: (212) 305-4899

ELIZABETH TARLING (2022)

Department of Medicine Columbia University 630 West 168th St. New York, NY 10032 Tel: (212) 305-4899

MURIELLE VENIANT (2019)

Department of Metabolic Disorders Amgen, Inc. One Amgen Center Drive Mail stop29-1-A Thousand Oaks, CA 91320 Tel: (805) 447-8009 Fax: (805) 499-0953

TOBIAS WALTHER (2022)

Harvard School of Public Health 665 Huntington Ave Building 1, Rm 205 Boston, MA 02115 Tel: (617) 432-1273

JOSEPH WITZTUM (2020)

Univ California, San Diego Biomedical Science Building-Room 1080 9500 Gilman Drive La Jolla, CA 92093-0682 Tel: 858-534-4347

RUDOLF ZECHNER (2019)

Institute of Molecular Biosciences Karl Franzens Universität Graz Heinrichstraße 31 8010 Graz Tel: +43 316 380 1900

PROGRAM COMMITTEE CHAIRS

JOEL ELMQUIST (2018)

UT Southwestern Medical Center Division of Hypothalamic Research Department of Internal Medicine 5323 Harry Hines Blvd. Dallas, TX 75390-9051 Tel: (214) 648-2911

DAVID MANGELSDORF (2018)

UT Southwestern Medical Center Pharmacology/HHMI 6001 Forest Park Road, ND9.124A Dallas, TX 75390-9041 Tel: (214) 645-5957

TREASURER/FUNDING

CHRISTOPHER K. GLASS

University of California San Diego Cellular & Molecular Medicine 9500 Gilman Drive, MC 0651 GPL Room 217 La Jolla CA 92093-0651

2018 ASBMB-Deuel Attendees

Laila Abdullah

The Roskamp Institute sgoulet@roskampinstitute.org

Christopher Allan UCLA cmallan@mednet.ucla.edu

Kimberly Alonge University of Washington kalonge@uw.edu

Birgitte Andersen Novo Nordisk btta@novonordisk.com

Jean-Mathieu Berger UT Southwestern jean-mathieu.berger@utsouthwestern.edu

Raiza Bonomo Loyola University Chicago rbonomo@luc.edu

Angie Bookout UT Southwestern angie.bookout@utsouthwestern.edu

Jenny Brown University of Washington jennymb@uw.edu

Jens Bruening Max Planck Institute for Metabolism Research bruening@sf.mpg.de

Xing Cai Baylor College of Medicine xing.cai@bcm.edu

Alexandre Caron UT Southwestern Medical Center alexandre.caron@utsouthwestern.edu

Carlos Castorena UT Southwestern carlos.castorena@utsouthwestern.edu

Joshua Chang Genentech jchang0803@gmail.com Pei-Chun Chen National Cheng Kung University pcchen@mail.ncku.edu.tw

Mohan Chitraju Harvard University chitraju@hsph.harvard.edu

John Chorba University of California San Francisco john.chorba@ucsf.edu

Roger Cone Life Sciences Institute rcone@umich.edu

Pablo Contreras Pontificia Universidad Católica de Chile prcontre@uc.cl

Victor Cortes Pontificia Universidad Catolica de Chile vcortesm@gmail.com

Silvia Corvera Univ of Massachusetts Medical School silvia.corvera@umassmed.edu

Kimberly Cox University of Texas Southwestern Medical Center kimberly.cox@utsouthwestern.edu

Kate Townsend Creasy UCSF kate.creasy@ucsf.edu

Rosanne Crooke Ionis Pharmaceuticals rcrooke@ionisph.com

Michael Czech Univ of Massachusetts Medical Center michael.czech@umassmed.edu

Olof Dallner Rockefeller University odallner@rockefeller.edu

Brandon Davies University of Iowa brandon-davies@uiowa.edu **Edward Dennis** University of California, San Diego edennis@ucsd.edu

Sabrina Diano Yale University sabrina.diano@yale.edu

Andrew Dillin UC Berkeley dillin@berkeley.edu

Ana Domingos Fundação Calouste Gulbenkian – IGC dominan@igc.gulbenkian.pt

Bart Duell Oregon Health and Science University duellb@ohsu.edu

Joel Elmquist UT Southwestern Medical Center joel.elmquist@utsouthwestern.edu

James Evans The Roskamp Institute jevans@roskampinstitute.org

Ronald Evans The Salk Institute for Biological Studies evans@salk.edu

Marco Fazzari University of Pittsburgh Medical Center maf167@pitt.edu

James Feng University of California, San Francisco james.feng@ucsf.edu

Jeffrey Friedman Rockefeller University Jeffrey.Friedman@mail.rockefeller.edu

Adri Galvan UCSF adrigalvan66@gmail.com

Jie Gao UCLA JieGao@mednet.ucla.edu Chaitanya Gavini Loyola University Chicago cgavini@luc.edu

Matthew Gillum University of Copenhagen gillum@sund.ku.dk

Christopher Glass University of California - San Diego ckg@ucsd.edu

Lila Gonzalez Pontificia Universidad Catolica de Chile Idgonzal@uc.cl

Barbara Gordon ASBMB bgordon@asbmb.org

Jesper Gromada Regeneron Pharmaceuticals jesper.gromada@regeneron.com

Tamar Gubeladze UCSF tamargubeladze@gmail.com

Adilson Guilherme Univ of Massachusetts Medical School adilson.guilherme@umassmed.edu

Yong Han Baylor College of Medicine yongh@bcm.edu

Cuiwen He UCLA cuiwenhe@chem.ucla.edu

Genaro Hernandez UT Southwestern Medical Center genaro.hernandez@utsouthwestern.edu

Joachim Herz University of Texas-Southwestern Medical Ctr. Joachim.Herz@UTSouthwestern.edu

Sei Higuchi Columbia University sh3440@cumc.columbia.edu Helen Hobbs UT Southwestern Medical Center helen.hobbs@utsouthwestern.edu

Cynthia Hong Pfizer cynthia.hong@pfizer.com

Jay Horton Univ of Texas Southwestern Medical Center jay.horton@utsouthwestern.edu

Tamas Horvath Yale University tamas.horvath@yale.edu

Xuchen Hu UCLA xuchenhu@mednet.ucla.edu

Rodney Infante UTSW Medical Center rodney.infante@utsouthwestern.edu

Holly Ingraham UCSF Holly.ingraham@ucsf.edu

Puneeth lyengar UT Southwestern Medical Center puneeth.iyengar@utsouthwestern.edu

Bharat Jaishy UT Southwestern Medical Center, Dallas, TX jaishybp@yahoo.com

Aditi Jatkar Harvard University ajatkar@g.harvard.edu

Lin Jia UT Southwestern Medical Center lin.jia@utsouthwestern.edu

Jeff Johnson Cayman Chemical Company jeff@caymanchem.com

Utsav Joshi The Roskamp Institute ujoshi@roskampinstitute.net John Kane U Calif-San Francisco Cardiovasc Res Inst john.kane@ucsf.edu

John Kennelly University of Alberta jkennell@ualberta.ca

Steven Kliewer Southwestern Medical Center steven.kliewer@utsouthwestern.edu

Oleg Kovrov Umea University oleg.kovrov@umu.se

Fredric Kraemer Stanford University School of Medicine fbk@stanford.edu

William Krause University of California, San Francisco william.krause@ucsf.edu

William Lagor Baylor College of Medicine lagor@bcm.edu

Tian Lan UT Southwestern tian.lan@utsouthwestern.edu

William Lands Fellow, AAAS wemlands@att.net

Philip Larsen Sanofi-Aventis Deutschland GmbH PhilipJust.Larsen@sanofi.com

Joseph Layne Novartis Institutes for Biomedical Research joseph.layne38@gmail.com

Stephen Lee University of California, Los Angeles sdlee@mednet.ucla.edu

Luis Leon Mercado UT Southwestern Medical Center Luis.LeonMercado@UTSouthwestern.edu Jennifer Li Mercer University LI_J@mercer.edu

Jingwen Liu VA Palo Alto Health Care System (154P) jingwen.liu@va.gov

Ken Loh Rockefeller University hloh@rockefeller.edu

Ichiro Manabe Chiba University manabe-tky@umin.ac.jp

David Mangelsdorf UT Southwestern Medical Center Davo.Mango@UTSouthwestern.edu

Virginie Mansuy Aubert Loyola University Chicago vmansuyaubert@luc.edu

Andre Marette Laval University andre.marette@criucpg.ulaval.ca

Preston Mason Brigham and Women's Hospital, Harvard Medical School rpmason@elucidaresearch.com

Aras Mattis UCSF aras.mattis@ucsf.edu

Natalie Michael UT Southwestern natalie.michael@utsouthwestern.edu

Eric Murphy University of North Dakota eric.murphy@med.und.edu

Katsuyuki Nakajima Nakajima & Associates, Co., Ltd. nakajimak05@ybb.ne.jp

Sridaran Natesan Sanofi Lisa.Smith@sanofi.com Yumiko Oishi Tokyo Medical and Dental University yuooishi-circ@umin.ac.jp

Sampath Parthasarathy University of Central Florida spartha@ucf.edu

Erika Piedras-Renteria Loyola University Chicago epiedra@luc.edu

Christina Priest UCLA CPriest@mednet.ucla.edu

Kevin Qian UCLA kqian@mednet.ucla.edu

Oswald Quehenberger University of California - San Diego oquehenberger@ucsd.edu

Kirsten Raun Novo Nordisk A/S kira@novonordisk.com

Gang Ren Lawrence Berkeley National Laboratory gren@lbl.gov

Hongmei Ren Wright State Univeristy Hongmei.ren@wright.edu

Denis Richard Quebec Heart and Lung Institute denis.richard@criucpq.ulaval.ca

Kerry-Anne Rye University of New South Wales karye@ozemail.com.au

Darleen Sandoval University of Michigan darleens@umich.edu

Francisco Schopfer University of Pittsburgh fjs2@pitt.edu **Michael Schwartz** University of Washington mschwart@uw.edu

Marcus Seldin UCLA mseldin3@gmail.com

Gerald Shulman Yale School of Medicine gerald.shulman@yale.edu

Debra Simmons University of Utah Debra.Simmons@hsc.utah.edu

Amar Singh VA Palo Alto Health Care System absingh@stanford.edu

William Smith University of Michigan Medical School smithww@med.umich.edu

Susanna Søberg Rigshospitalet and Novo Nordisk Foundation Center, Copenhagen University susanna@sund.ku.dk

Parkyong Song UT Southwestern medical center parkyong.song@utsouthwestern.edu

Nathanael Spann UCSD Sch of Med nspann@ucsd.edu

Jacqueline Stephens Pennington Biomedical Research Center jacqueline.stephens@pbrc.edu

Eveline Stock UCSF Eveline.Stock@ucsf.edu

Lateef Sulaimon Crescent University Abeokuta, Ogun State adlat4best@yahoo.com

Alan Tall Columbia University Col of C and S art1@columbia.edu **Elizabeth Tarling** University of California, Los Angeles etarling@hotmail.com

Davis Thomas Loyola University-Chicago dthomas8@luc.edu

Michelle Trevino Amarin Pharma Inc. michelle.trevino@amarincorp.com

Matthias Tschöp Helmholtz Zentrum München and Technical University of Munich matthias.tschoep@helmholtz-muenchen.de

Dennis Vance University of Alberta dennis.vance@ualberta.ca

Jean Vance University of Alberta jean.vance@ualberta.ca

Claudio Villanueva University of Utah villanueva@biochem.utah.edu

Rosemary Walzem Texas A&M University rwalzem@tamu.edu

Simeng Wang UTSouthwestern simeng.wang@utsouthwestern.edu

Ethan Weiss UCSF ethan.weiss@ucsf.edu

Corinne Williams Journal of Clinical Investigation | JCI Insight cwilliams@the-jci.org

Kevin Williams The University of Texas Southwestern Medical Center kevin.williams@utsouthwestern.edu

Joseph Witztum University of California, San Diego jwitztum@ucsd.edu **Qi Wu** Baylor College of Medicine qiw@bcm.edu

Steven Wyler UT Southwestern Steven.Wyler@utsouthwestern.edu

Guobin Xia Baylor College of Medicine gxia@bcm.edu

Yong Xu Baylor College of Medicine yongx@bcm.edu

Haojun Yang Johns Hopkins yanghaojun0113@gmail.com

Shi-Bing Yang Institute of Biomedical Sciences, Academia Sinica sbyang@ibms.sinica.edu.tw

Stephen Young University of California Los Angeles sgyoung@mednet.ucla.edu

Jessica Yue University of Alberta jessica.yue@ualberta.ca

Wenwen Zeng Tsinghua University wenwenzeng@tsinghua.edu.cn

Yinxin Zhang Rockefeller University zhangyinxin04@gmail.com

Jeffrey Zigman UT Southwestern Medical Center jeffrey.zigman@utsouthwestern.edu

Charles Zuker Columbia University/HHMI Ir2653@cumc.columbia.edu

You're invited to join the Lipid Research Division of the ASBMB

The Lipid Research Division was born from a grassroots discussion of broad concerns shared by all lipid research scientists. These included issues such as increased national and international visibility for lipid research and increased funding for lipid research. We invite you to join this community, contribute to the ongoing discussions and help support the lipid community.

www.asbmb.org/lipidcorner

ASBMB-DEUEL 2019

March 5 – 8 Laguna Cliffs Marriott Dana Point, Calif.

