Journal News

Our internal ecology

Ecosystem models help explain the diversity of the gut microbiome
Laurel Oldach
Sept. 29, 2020

According to a recent estimate, if you sample enough humans’ intestines, almost 40,000 types of microbe can be found. Any individual may have 100 trillion individual micro-organisms in one or two thousand taxonomic groups. How does the microbiome maintain such diversity?

One model to explain the enormous variety borrows from studies of larger ecosystems. A well-known theory in ecology, nonequilibrium coexistence of competitors, suggests that as an environment fluctuates, different species gain an edge over neighbors — but their ascendance rarely lasts long.

Cover-890x496.jpg
Leyuan Li
Macro- and microecosystems may have more in common than we might think.

Intestinal nutrients fluctuate as the human host eats and excretes, in time with the physiology of sleep–wake cycles, and along the length of the gut. A layer of mucus that protects host cells from commensal microbes introduces new oligosaccharides as a fuel source and also separates microbial communities into mucosal and luminal niches. As conditions change, species in the microbiome shift in abundance and jockey for survival, and the constantly changing competitive edge keeps the ecosystem diverse.

According to University of Ottawa postdoctoral fellow Leyuan Li, the time is ripe for microbiome studies to apply population modeling and systems dynamics from macroecology to this more intimate ecosystem.

“Most of the time we study the gut microbiome as a whole: We sequence one sample as if it were representative of our whole gut,” said Li. “The gut is actually a heterogeneous system … so we need to start thinking about the gut microbiome like a rainforest.”

Li, who conducted her Ph.D. studies building artificial ecosystems, now studies gut microbiome dynamics in health and diseases such as inflammatory bowel disease in the lab of Ottawa professor Daniel Figeys. In a recent review in the journal Molecular & Cellular Proteomics, the pair offer an introduction to microbiome ecology.

The review highlights the potential for metaproteomics, which characterizes the proteins of whole communities of microbes, to describe microbial function. Most microbiome studies use metagenomics, ribosomal RNA sequencing of the mixed population of a microbial community, to identify the bacteria, fungi and archaea that are present. Li thinks metaproteomics also may help researchers road-test increasingly popular ex vivo experimental models of the microbiome to make sure they match up to the real thing.

“Using metagenomics, you know who are there and what they can do,” Li said. “With metaproteomics you know who are there and what they are doing.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

What is metabolism
News

What is metabolism

May 12, 2024

A biochemist explains how different people convert energy differently – and why that matters for your health.

What’s next in the Ozempic era
News

What’s next in the Ozempic era

May 11, 2024

Diabetes, weight loss and now heart health: A new family of drugs is changing the way scientists are thinking about obesity — and more uses are on the horizon.

How a gene spurs tooth development
Journal News

How a gene spurs tooth development

May 7, 2024

University of Iowa researchers find a clue in a rare genetic disorder’s missing chromosome.

New class of antimicrobials discovered in soil bacteria
News

New class of antimicrobials discovered in soil bacteria

May 5, 2024

Scientists have mined Streptomyces for antibiotics for nearly a century, but the newly identified umbrella toxin escaped notice.

New study finds potential targets at chromosome ends for degenerative disease prevention
News

New study finds potential targets at chromosome ends for degenerative disease prevention

May 4, 2024

UC Santa Cruz inventors of nanopore sequencing hail innovative use of their revolutionary genetic-reading technique.

From the journals: JLR
Journal News

From the journals: JLR

May 3, 2024

How lipogenesis works in liver steatosis. Removing protein aggregates from stressed cells. Linking plasma lipid profiles to cardiovascular health. Read about recent papers on these topics.