January 2012

Meet Vicky Minderhout

She was named the Washington state winner of the U.S. Professors of the Year Award

Vicky Minderhout 

Vicky Minderhout, a professor of chemistry, has been teaching at Seattle University for the past 31 years. Although her research training is in clinical chemistry, it was during her postdoctoral work that her interests turned to teaching. Late last year, Minderhout was named the 2011 Washington state winner of the U.S. Professors of the Year award, sponsored by the Carnegie Foundation for the Advancement of Teaching and the Council for the Advancement and Support of Education. Minderhout was one of 27 state-level winners; four others were named national-level winners. We asked Minderhout to elaborate on her teaching strategy and to what she hopes the award will draw attention.

Q. What piqued your interest in teaching?
I taught part time one year during my postdoc and had so much fun working with students that I seriously began wondering about the career path I had chosen, which was clinical chemistry, not teaching.

Q. Was this an opportunity you actively looked for or were you volunteered to teach? And whom did you teach?
I was recruited from my postdoctoral program in clinical chemistry at the University of Washington to teach clinical chemistry to undergraduates. Seattle University was unusual for offering a bachelor’s degree in clinical chemistry.

Q. How is your strategy for teaching — for getting through to your students — different from that of your peers?
My classroom strategy utilizes (what is known as) active learning and involves students working in small groups answering instructor-designed questions — as opposed to lecture. My chemistry colleagues at Seattle University use active learning in the classroom to varying extents; however, nationally, the use of active-learning strategies is not as prevalent. This approach engages students by actively involving them in the learning process. They feel challenged, but most eventually take pride in their development personally and intellectually.

Q. Does active learning essentially follow the Socratic method, involving dialogue and challenge?
Yes, that’s correct. And in large classes, the dialogue and challenge can be between the students themselves; it does not always require the instructor to lead the challenge. In fact, it is probably best if students take on this role, although the instructor may assign a specific student to be the skeptic.

Q. When did you begin teaching in this different way?
After my first sabbatical in 1993, I redesigned one upper-division course to focus on the primary literature and became very interested in teaching problem solving and critical thinking in more direct ways than I had done previously. I attended an active-learning workshop in 1997 that focused on process education. This workshop helped me translate my ideas about what I wanted my teaching to accomplish for my students into real classroom practices that I could implement. Since the workshop modeled classroom practices while delivering content about learning, I actually was able both to learn new material and watch it being implemented in ways I could adapt to my classroom.



Vicky Minderhout assists student Halina Walker and her team. Photo courtesy of Chris Taylor.

Q. Have favorite teachers of yours informed how you teach? do you emulate their methods?
Initially, I was taught by interactive lecture, and I had the good fortune to have several teachers who did this extremely well. It can be very motivating for students. However, my undergraduate quantum mechanics course was taught entirely without lecture. Students worked in pairs to answer the end-of-chapter problems. We could seek help from other students and the professor, but eventually we had to explain our answers to the professor. I worked very hard in that course and passed my qualifying exam in graduate school. So motivating students is important, but, in the end, they have to do the heavy lifting that learning requires. My courses have students explaining answers first to each other and then to the class. So my teachers helped me to shape my teaching and to be confident that I could get students to achieve understanding without lecturing while at the same time they could develop other skills.

Q. Do you have any concrete examples of how your teaching method has improved your students’ abilities to understand or better appreciate the topics you present?
A. First of all, this method is basically what is stated in the book “How People Learn” published by the National Research Council, which has 600 references. Also, the success of the method is consistent with data collected over many years in the cognitive sciences. As you might imagine, doing side-by-side controlled studies on learning is exceedingly difficult, since there are many variables and controlling those variables is difficult. Additionally, our students who have graduated have returned to report how well prepared they are compared to others. One student felt his biochemistry course at an Ivy League health-professions school was extremely easy following what he had done with us. Also, we have shared our exam questions with others, and they are impressed with how well our students perform on the complex questions we ask. Many of these questions transfer into other scientific  contexts. In our biochemistry courses, we have students write final growth reports that reflect on their maturation in learning as a result of the course. Now, because we know their names, the reporting is not blind, and students could be brown-nosing, but when you read comments like “I figured out how to learn in this course and wish I had known how to learn in my freshman year” or “I never really organized my problem solving very effectively until this course” or “I am using strategies I developed from this course in all my other courses,” it is persuasive. The students could have said “This course really helped me learn,” “The course helped me improve my problem solving” or “This course helped me improve my study strategies,” but, when students give you the additional context for their growth, it makes their statements much more believable.

Q. What do you want to occur as a result of receiving this award? For your students and your university?
My students already have a great education — if they embrace this classroom strategy! I am hopeful that more faculty will embrace more active-learning strategies in their classrooms. Faculty members are doing this in classes of 700 and classes of 10, so there are ways that we can engage students and coach the learning process in any class size. As more foreign-born individuals earn (science, technology, engineering and math) degrees than do U.S. citizens, we should be concerned that we are no longer attracting young minds into these fields — and wonder why that is so. Is this because the drinking-from-the-fire-hose approach and the emphasis on coverage at all costs turns many students off to our fields? Science is data driven and interdisciplinary. We need to create environments in which students at all levels work with raw data so they will understand that everything in the textbook actually originates from raw data and offer students opportunities to make connections across disciplines. This will be exciting for us and them and will model how science really works.

Recommended Resources

• Lewis, S.E. and Lewis, J.E. (2005) Departing from lectures: An evaluation of a peer-led guided inquiry alternative. J. Chem. Educ. 82, 135–139.

• Haak, D.C., HilleRisLambers, J., Pitre, E., and Freeman, S. (2011) Increased structure and active learning reduce the achievement gap in introductory biology. Science 332, 1213–1216.

• Deslauriers, L., Schelew, E., and Wieman, C. (2011) Improved learning in a large-enrollment physics class. Science 332, 862–864.

found= true1622