Award

Zhang takes the lead
in protein modeling

Meet the winner of the 2020 Delano Award for Computational Biosciences
Courtney Chandler
November 01, 2019

The old adage “Function depends on structure” has been taught in protein biology courses for decades. Yet as some of the most complex and versatile biomolecules, proteins can be challenging to structurally define. Bioinformatics algorithms that predict 3D protein structure based on amino acid sequence are crucial for deducing the biological function of proteins that have not been structurally characterized by other methods.

Yang Zhang

Yang Zhang, a professor of biological chemistry and computational medicine and bioinformatics at the University of Michigan, has developed a repertoire of computational methods for predicting protein structure. For his work, Zhang is being awarded the American Society for Biochemistry and Molecular Biology’s 2020 DeLano Award for Computational Biosciences.

After earning a Ph.D. in physics, Zhang began applying his background to translational science, partially because biomolecules were more tangible than the theoretical concepts of particle physics.

“As a scientist and human being, I want to understand how and why a protein that’s coded from DNA can fold into a stable 3D structure,” he said. “That is the secret of life.”

His methods, including prediction algorithms I-TASSER and QUARK, have been listed consistently as top-tier based on fieldwide assessments. William Smith, a professor emeritus at the University of Michigan, described Zhang as “a worldwide leader in structural bioinformatics and protein structure modeling” in his letter nominating Zhang for the award.

For Zhang, the thrill of basic discovery goes hand-in-hand with translational impact. Both can be aided significantly by structural prediction and modeling algorithms.

“If we can computationally model protein shape, it will have a big impact on drug design and discovery, and on human health in general,” he said. “But … it is also important for us to understand protein systems and the life science systems they are involved in outside of disease.”

Zhang also has begun to harness the increased power that comes with machine learning, which enables computational systems to improve their function based on experience without explicit programming.

“Now you can tell a computer to learn the principles of a system even if you don’t understand them, and the computer will generate a model,” he said. “This will represent a big change for the field.”

Enhancing protein structure prediction algorithms

Computation-based protein structural modeling provides a fast and inexpensive way to investigate protein-related scientific queries across many disciplines. However, partially due to the complicated nature of proteins and their folding patterns, the researchers behind computational programs have struggled to make protein structure prediction methods more accurate.

Using machine learning, Yang Zhang recently has leveraged big data from whole-genome sequencing studies to improve upon his existing computational models. This approach enables him to derive co-evolutionary relationships among proteins, which helps improve prediction of protein structure.

Zhang’s award lecture, “Toward the solution of the protein structure prediction problem,” will focus on the progress the field has made in improving protein prediction models and what the future will look like.

Courtney Chandler

Courtney Chandler is a postdoctoral researcher at Johns Hopkins University and an industry careers columnist for ASBMB Today.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in People

People highlights or most popular articles

Protein society awards; Parise named dean; remembering Bud Patterson
Member News

Protein society awards; Parise named dean; remembering Bud Patterson

March 30, 2020

Awards, honors, promotions and more. Find out what's going on in the lives of ASBMB members.

Stanley Cohen (1922 – 2020)
Retrospective

Stanley Cohen (1922 – 2020)

March 23, 2020

Laura Furge remembers a Nobel laureate who discovered epidermal growth factor and its receptor, work that has allowed generations of biochemists to study the pathways that allow cells to respond to external events.

Chu wins educator award; Cech honored; remembering Holmgren
Member News

Chu wins educator award; Cech honored; remembering Holmgren

March 23, 2020

Awards, promotions and more. Find out what's going on in the lives of ASBMB members.

The best of two worlds
Journal News

The best of two worlds

March 19, 2020

Cecil Pickett’s research career spanned several decades and led to pivotal findings on oxidative stress responses and key breakthroughs in drug discovery.

Ron Kaback (1936 – 2019)
Retrospective

Ron Kaback (1936 – 2019)

March 16, 2020

Gary Rudnick remembers his friend and mentor, a biochemist who combined a deep love of science with a prankish sense of humor.

Patton–Vogt to lead department; Wiley Prize for Rosen; and more
Member News

Patton–Vogt to lead department; Wiley Prize for Rosen; and more

March 16, 2020

Awards, promotions and more. Find out what's going on in the lives of ASBMB members.