February 2010

Heart Matters


On Valentine’s Day, people’s thoughts  naturally turn to hearts, though typically of the chocolate or candy variety. However, this holiday should also serve as a reminder of the importance of the human heart, quietly beating more than 100,000 times and pumping almost 2,000 gallons of blood not just this day, but every day of the year. Unfortunately, unlike love, the heart is not everlasting; recent statistics suggest that this year, more than 1 million people in the U.S will experience a new or recurrent heart attack, more than 400,000 will die from coronary heart disease and bad hearts will total some $300 billion in direct and indirect costs.

However, with increased understanding of how the heart works, these numbers can surely improve. So, in honor of this special heart-related holiday, the American Society for Biochemistry and Molecular Biology is highlighting some of our members who devote their time to heart-related research, looking to make heart defects, disease and failure a thing of the past.

Kenneth Walsh

Director, Whitaker Cardiovascular Institute, Boston University School of Medicine

Kenneth Walsh took over as the third director of Boston’s Whitaker Cardiovascular Institute in February 2008 and is looking to enhance translational research efforts.

In the arena of cardiovascular research, most scientists fall into one of two camps: those who study the “cardio” and those who study the “vascular.” Not many have focused their efforts on the interplay of the two, which Kenneth Walsh finds somewhat unusual.

“In the body, these two systems, heart muscle and blood vessels, are talking to each other all the time,” he says, “whether it’s in response to physiological stimuli like exercise, in response to some injury or during normal growth, so the heart and vasculature can keep pace with the rest of the body.”

The mechanisms behind this inter-tissue communication are the major theme underlying Walsh’s lab at Boston University. His methods involve a two-pronged approach, first identifying critical proteins or pathways through bioinformatics (as Walsh says, “mining the cardiac secretome”), then validating uncovered molecules using genetic models.

In several instances, the new molecules have proved to be potential biomarkers for pathological conditions, such as in Walsh’s recent work identifying follistatin-like 1 as a factor that may determine the susceptibility of the heart to ischemic injury.

NEXT PAGE 1 | 2 | 3 | 4 | 5

First Name:
Last Name:

Comment on this item:
Our comments are moderated. Maximum 1000 characters. We would appreciate it if you signed your name to your comment.






Page 1 of 1

found= true500