February 2010

Ernest Everett Just: Experimental Biologist Par Excellence


Ernest Everett Just outside the Marine Biological Laboratory in 1921.
Photo credit: The Marine Biological Laboratory Archives.

For almost 40 years after the end of World War II, the work of Ernest Everett Just, an African-American biologist known for his studies of fertilization and early development in marine invertebrates, lay forgotten, buried in the scientific literature. Then, in 1983, Kenneth R. Manning, a historian of science at Massachusetts Institute of Technology, published a prize-winning biography titled “Black Apollo of Science: The Life of Ernest Everett Just” (1). Stephen Jay Gould (2) favorably reviewed Manning’s book and wrote a column in the magazine Natural History about Just (3). Since then, a number of events have taken place that have brought increased attention to Just: A stamp honoring him was issued; symposia were held in his honor, the most recent at Howard University in 2008; and, in 2009, a special issue of the journal Molecular Reproduction and Development dedicated to Just was published (4). Yet still, E. E. Just and his contributions remain largely unknown to biologists.

A Career in Fertilization and Development

Born in 1883 in Charleston, S.C., Just attended the Kimball Union Academy, a boarding school in Meriden, N.H., graduating in 1903. He then enrolled at Dartmouth College and graduated magna cum laude in 1907 as an esteemed Rufus Choate scholar. He immediately accepted a teaching position at Howard University in Washington, D.C., where he quickly rose through the academic ranks, becoming full professor in 1912. He chaired the department of zoology at Howard and, with the help of the Rosenwald Fund, established a master’s program in that field.

In 1909, Just began making annual summer excursions to the Marine Biological Laboratory in Woods Hole, Mass., where he worked under renowned embryologist Frank R. Lillie. Almost from the beginning, his work was significant. His first paper (5) showed that the sperm entry point determines the first cleavage plane in the egg of the marine annelid Nereis limbata. The body of work for his doctoral degree, which he obtained from the University of Chicago in 1916, was based on his study of the breeding habits of N. limbata and Platynereis megalops (another annelid) and the fertilization reaction of the sand dollar Echinarachnius parma. While at the MBL, he rose from student apprentice to internationally respected scientist.

Just was known at Woods Hole and beyond for his uncanny ability to coax marine invertebrate embryos to develop normally, and many sought his advice on the proper handling of marine animal eggs and embryos. He compiled a set of indices of normal development based mainly on the timing and quality of fertilization envelope separation, allowing him to predict with great certainty whether or not development would be normal for a given egg. In 1939, he published a laboratory manual, “Basic Methods for Experiments on Eggs of Marine Animals” (6), which applied his deep storehouse of knowledge on egg handling.

Not content with simply studying the marine life around Woods Hole, in 1929 Just traveled to the Stazione Zoologica Anton Dohrn in Naples, Italy, to investigate fertilization in several European sea urchins and to determine whether the Mediterranean annelid Nereis dumerilii was the same as the North American species Platynereis megalops, as some had postulated. (It was not.) Then, in 1930, he received in invitation by Max Hartmann, the famous German embryologist, to visit the Kaiser-Wilhelm Institut für Biologie near Berlin. An invitation of this kind extended to an American was unprecedented, but the Germans saw an affinity between Just’s work and their own. They wanted to see if his ideas about the importance of the cell cortex (the structured layer just beneath the cell surface) could be applied to protists such as Amoeba proteus, which they had been studying.

Altogether, Just made nine excursions to Europe. In addition to his trips to Berlin and Naples, he traveled to the Sorbonne in Paris, where he spent some time completing his second book, “The Biology of the Cell Surface” (7), which brought his scientific work and his general ideas together as one synthetic whole. Of the 70 articles he published over the course of his 30-year career, several were in German journals, including one in Naturwissenschaften that, for the first time, correlated changes in cell adhesiveness with developmental stages during the early embryonic cleavage process (8). After 1936, Just’s papers became increasingly philosophical. This reflected both his desire to apply his ideas about the importance of the cell surface more broadly and his increased willingness to challenge those American counterparts (notably Thomas Hunt Morgan and Jacques Loeb) whom he saw as too reductionistic.

NEXT PAGE 1 | 2 | 3

First Name:
Last Name:

Comment on this item:
Our comments are moderated. Maximum 1000 characters. We would appreciate it if you signed your name to your comment.



Great article, thanks for sharing. Antonio Vidal Pascual Clinical embriologyst





  • The Info was great but next time can you give a fuller explanation of the dates and put it in time order....Thanks!!

Page 1 of 1

found= true500