June 2012

Stark raving mad for science

Back in the U.S.
Determined not to be forced out, Stark found another position in 1992 at the Cleveland Clinic Foundation, where a vacancy popped up after Bernadine Healy moved to become head of the National Institutes of Health under President George H.W. Bush. Twenty years later, his laboratory still continues to forge ahead on interferons, STAT1 and NFκB research.

His group has found that the mutagenesis approach they have developed can be powerful. “It is a way to upregulate gene expression randomly in a population of cells,” explains Stark. “If upregulation of a protein in one cell out of millions in a population gives you an interesting phenotype and you have a way to find that cell by selection or something else, then that can lead to a novel research project.”

Photo of George Stark and his family 
Stark with his wife, Mary Beck; son, Robert; and daughter, Janna. Photo courtesy of George Stark. 

For instance, Stark’s group has an interest in lysine methylation of transcription factors, a mechanism that affects gene expression. With the mutagenesis approach, “we found upregulation of a demethylase that affected the function of NFκB,” says Stark (11). “We’ve also used that method a lot in finding new mechanisms of drug resistance” (12).

Immersed as he is, Stark still manages to have a life outside of science. “I like to cook. I enjoy sports, mostly now as a viewer rather than a participant!” he says. “I love classical music. I did sing together with Mary a lot. We were in choruses in New York and California.” The Starks also are enthusiastic concert and theater goers and collect art pieces, such as Japanese prints and Inuit sculptures.

But Stark continues to be leery of retirement. He has reduced his load of administrative work so he can have more free time to spend with his family. But he is absolutely certain of one thing: “I don’t want to give up science,” he says. “I don’t want to quit.”

  1. 1. Zagorski, N. George Stark to give 2011 annual meeting opening lecture. ASBMB Today, January 2011.
  2. 2. Stark, G.R. J. Biol. Chem. 280, 9753 – 9760 (2005).
  3. 3. Noyes, B.E. & Stark, G.R. Cell 5, 301 – 310 (1975).
  4. 4. Renart, J.; Reiser, J.; & Stark, G.R. Proc. Natl. Acad. Sci. U.S.A. 76, 3116 – 3120 (1979).
  5. 5. Southern, E.M. J. Mol. Biol. 98, 503 – 517 (1975).
  6. 6. Alwine, J.C.; Kemp, D.J.; & Stark, G.R. Proc. Natl. Acad. Sci. U.S.A. 74, 5350 – 5354 (1977).
  7. 7. Mukhopadhyay, R. The men behind Western blotting. ASBMB Today, March 2012.
  8. 8. Kresge, N.; Simoni, R.D.; & Hill, R.L. J. Biol. Chem. 282, e23 (2007).
  9. 9. Kandel, E.S. et al. Proc. Natl. Acad. Sci. U.S.A. 102, 6425 – 6430 (2005).
  10. 10. Velazquez, L. et al. Cell 70, 313 – 322 (1992).
  11. 11. Tao, L. et al. Proc. Natl. Acad. Sci. U.S.A. 106, 16339 – 16344 (2009).
  12. 12. Canhui Guo & Stark, G.R. Proc. Natl. Acad. Sci. U.S.A. 108, 7968 – 7973 (2011).


Raj_MukhopadhyayRajendrani Mukhopadhyay (rmukhopadhyay@asbmb.org) is the senior science writer for ASBMB Today and the technical editor for The Journal of Biological Chemistry. Follow her on Twitter at @rajmukhop.

NEXT PAGE 1 | 2 | 3

First Name:
Last Name:

Comment on this item:
Our comments are moderated. Maximum 1000 characters. We would appreciate it if you signed your name to your comment.


There aren't any comments on this item yet. Tell us what you think!


Page 1 of 1

found= true1835