February 2012

Retrospective: Paul M. Doty (1920 – 2011)

With investigations of the conformational properties and interaction stoichiometry of polyribonucleotides of simple and complex sequence (7) and the separation of the complementary strands of DNA and then their renaturation to biologically active duplexes (8), the groundwork was laid for the complementary strand annealing that proved so critical in making gene cloning possible. In addition, the laboratory’s decisive work on RNA provided the algorithm for RNA secondary structure (9) that today remains the basis for correlating RNA sequences with secondary structure prediction. This work was quickly followed by evidence intimating the existence of a class of RNA in ribosomes that hybridized uniquely to genomic DNA of the same species, but not to that of foreign species (10), what later came to be known as mRNA.

Although Doty continued to guide the scientific activities of his laboratory, he began in the late 1950s to do so at a distance because of his increasing concern with atomic disarmament issues. This new involvement, which began in 1957 when he served as chairman of the Federation of American Scientists, increased as he became more concerned about what atomic war could mean for the world. This concern led him to play a significant role in the creation of the Pugwash conferences and in other contacts with Russian scientists, sometimes at a personal level and at other times in back-channel negotiations at the behest of the U.S. government.

It was these interests as well that led Doty to take on a leadership role in the founding of the Belfer Center for Science and International Affairs, which later became a part of the John F. Kennedy School of Government at Harvard, where he influenced the training of many scientists who now hold important positions in government or academia.

Doty was a leader and a mentor to many. He was exceptionally articulate, wrote beautifully, always directed his focus on major questions and stressed the important. He was careful about experimental detail, accuracy and intellectual honesty, but he was in no way a data collector. He set a very high standard for the work done in his laboratory, inspired others and called for one’s best. He rarely made an effort to teach, yet he taught by example. Ambitious as he was, he recognized the value of permitting the most talented and creative of his associates to function on their own; for such individuals, he had done enough to set the general goals, and he made them feel that there was freedom of operation in the Doty laboratory.

For most of his career, Doty was married to Helga Boedtker, his former graduate student, who did much to manage the laboratory during his nonscientific distractions. She predeceased him 10 years ago. He is survived by a son, Gordon, from his first marriage to the late Margaretta Gravatt, and three daughters with Helga: Marcia, Rebecca and Katherine.

Paul Doty maintained strong friendships with many who were associated with him. He will be sorely missed.

REFERENCES
  1. 1. Doty, P. M., Zimm, B. H., and Mark, H. (1944) Some light scattering experiments with high polymer solutions. J. Chem. Phys. 12, 144 – 145; (1945) An investigation of the determination of molecular weights of high polymers by light scattering. J. Chem. Phys. 13, 159 – 166.
  2. 2. Doty, P., Holtzer, A. M., Bradbury, J. H., and Blout, E. R. (1954) Polypeptides. II. The configuration of polymers of γ-benzyl-L-glutamate in solution. J. Am. Chem. Soc. 76, 4493 – 4494.
  3. 3. Doty, P. and Bunce, B. H. (1952) The molecular weight and shape of desoxypentose nucleic acid. J. Am. Chem. Soc. 74, 5029 – 5034.
  4. 4. Yang, J. T. and P. Doty (1957) The optical rotatory dispersion of polypeptides and proteins in relation to configuration. J. Am. Chem. Soc. 79, 761 – 775.
  5. 5. Rice, S. A. and Doty, P. (1957) The thermal denaturation of deoxyribose nucleic acid. J. Am. Chem. Soc. 79, 3937 – 3947.
  6. 6. Doty, P., Boedtker, H., Fresco, J. R., Haselkorn, R., and Litt, M. (1959) Secondary structure in ribonucleic acids. Proc. Natl. Acad. Sci. USA, 45, 482 – 499.
  7. 7. Fresco, J.R., and Alberts, B. M. (1960) The accommodation of noncomplementary bases in helical polyribonucleotides and deoxyribonucleic acids. Proc. Natl. Acad. Sci. USA, 46, 311 – 321.
  8. 8. Doty, P., Marmur, J., Eigner, J. and Schildkraut, C. (1960) Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies. Proc. Natl. Acad. Sci. USA, 46, 461 – 476.
  9. 9. Fresco, J.R., Alberts, B.M., and Doty, P. (1960) Some molecular details of the secondary structure of ribonucleic acid. Nature, 188, 98 – 101.
  10. 10. Schildkraut, C., Marmur, J., Fresco, J. R., and Doty, P. (1961) Formation and properties of polyribonucleotide-polydeoxyribonucleotide helical complexes. J. Biol. Chem., 236, PC 2 – 4.

Jacques R. Fresco (jrfresco@princeton.edu) is a professor in the department of molecular biology at Princeton University.

NEXT PAGE 1 | 2

First Name:
Last Name:
Email:
Comment:


Comment on this item:
Rating:
Our comments are moderated. Maximum 1000 characters. We would appreciate it if you signed your name to your comment.


  


There aren't any comments on this item yet. Tell us what you think!

0 Comments

Page 1 of 1

found= true1662