August 2011

Anne-Claude Gingras: probing phosphatase complexes

La grande débrouillarde

In 2005, after her three-year stint in Aebersold's lab, Gingras found herself a wanted woman. Research institutes from across the globe were offering jobs to the rising star. In the end, she decided to come back close to home and joined the Samuel Lunenfeld Research Institute in Toronto.

"Having spent a little time in Canada," she says jokingly, "I knew that Toronto was a superb environment for signaling biology. But during the interview process, what also became apparent was the collaborative spirit that ran through the Toronto community."

"Researchers here work together whenever it makes sense, which provides an extremely stimulating research environment both for faculty and trainees. And given the type and scope of research that I wanted to perform, robust collaborations were essential."

Gingras believes this human element cannot be understated. Even more than her many published papers, Gingras values the many great scientists she has had a chance to work with over the years and the opportunities those interactions opened up.

"The research world is smaller than you think," she says, "and the people you meet along the way will probably come back into your life at some point. So, for young scientists out there, when someone requests some cells or protein from you, be as nice as possible, because you never know what may happen in the future."

As for the present, Gingras' group combines interaction proteomics, phosphoproteomics, functional screens and other approaches to identify and characterize protein phosphatase complexes, several of which she initially identified through discovery proteomics. One such phosphatase complex of interest, which Gingras first discovered while working under Aebersold, is PP4cs, which is linked to DNA damage repair and also is associated with resistance to the potent cancer drug cisplatin.

Another current project, and the subject of two recent Journal of Biological Chemistry articles, is a large protein complex termed striatin interacting phosphatase and kinase, or STRIPAK. This complex contains both a phosphatase and a kinase bridged by a protein called CCM3 (so named because when mutated, it causes blood vessel defects in the brain called cerebral cavernous malformations). Her group has found that STRIPAK is involved in polarizing Golgi in cells, and they are now further characterizing structure and function.

In the near future, however, Gingras hopes to take a broader approach and try to model signaling networks quantitatively, and she has begun doing some studies in yeast. "On the phosphatase front, we still need to carry out detailed biochemical analyses to understand how they are regulated and how they recognize their targets," she notes. "But at the same time, we need to look at the network level if we want to figure out all the implications of crosstalk and feedback loops."

NEXT PAGE 1 | 2 | 3 | 4 | 5 | 6

First Name:
Last Name:

Comment on this item:
Our comments are moderated. Maximum 1000 characters. We would appreciate it if you signed your name to your comment.




Anne-Claude is a human dynamo! Great article on a great researcher and colleague! Jim Woodgett



Page 1 of 1

found= true1452